Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 283: 127706, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574431

RESUMO

Microbial inoculation stands as a pivotal strategy, fostering symbiotic relationships between beneficial microorganisms and plants, thereby enhancing nutrient uptake, bolstering resilience against environmental stressors, and ultimately promoting healthier and more productive plant growth. However, while the advantageous roles of inoculants are widely acknowledged, the precise and nuanced impacts of inoculation on the intricate interactions of the rhizosphere microbiome remain significantly underexplored. This study explores the impact of bacterial inoculation on soil properties, plant growth, and the rhizosphere microbiome. By employing various bacterial strains and a synthetic community (SynCom) as inoculants in common bean plants, the bacterial and fungal communities in the rhizosphere were assessed through 16 S rRNA and ITS gene sequencing. Concurrently, soil chemical parameters, plant traits, and gene expression were evaluated. The findings revealed that bacterial inoculation generally decreased pH and V%, while increasing H+Al and m% in the rhizosphere. It also decreased gene expression in plants related to detoxification, photosynthesis, and defense mechanisms, while enhancing bacterial diversity in the rhizosphere, potentially benefiting plant health. Specific bacterial strains showed varied impacts on rhizosphere microbiome assembly, predominantly affecting rhizospheric bacteria more than fungi, indirectly influencing soil conditions and plants. Notably, Paenibacillus polymyxa inoculation improved plant nitrogen (by 5.2%) and iron levels (by 28.1%), whereas Bacillus cereus boosted mycorrhization rates (by 70%). Additionally, inoculation led to increased complexity in network interactions within the rhizosphere (∼15%), potentially impacting plant health. Overall, the findings highlight the significant impact of introducing bacteria to the rhizosphere, enhancing nutrient availability, microbial diversity, and fostering beneficial plant-microbe interactions.


Assuntos
Microbiota , Rizosfera , Plantas/microbiologia , Bactérias/genética , Solo/química , Fenótipo , Microbiologia do Solo , Raízes de Plantas/microbiologia
2.
Trends Plant Sci ; 16(2): 89-97, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21144794

RESUMO

Size and shape are intrinsic characteristics of any given plant organ and, therefore, are inherently connected with its identity. How the connection between identity and growth is established at the molecular level remains one of the key questions in developmental biology. The identity of floral organs is determined by a hierarchical combination of transcription factors, most of which belong to the MADS box family. Recent progress in finding the target genes of these master regulators reopened the debate about the missing link between identity and floral organ growth. Here, we review these novel findings and integrate them into a model, to show how MADS proteins, in concert with co-factors, could fulfill their role at later stages of floral organ development when size and shape are established.


Assuntos
Proteínas de Domínio MADS/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Plantas/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA