Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 97(5): 744-53, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26477546

RESUMO

Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.


Assuntos
Cerebelo/anormalidades , Cílios/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Retina/anormalidades , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Canadá/epidemiologia , Cerebelo/patologia , Criança , Pré-Escolar , Cílios/metabolismo , Exoma/genética , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Feminino , Seguimentos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/epidemiologia , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Masculino , Linhagem , Prognóstico , Retina/patologia , Adulto Jovem
2.
J Med Genet ; 52(5): 303-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25650066

RESUMO

BACKGROUND: The heterogeneous group of 3-methylglutaconic aciduria disorders includes several inborn errors of metabolism that affect mitochondrial function through poorly understood mechanisms. We describe four newborn siblings, from a consanguineous family, who showed microcephaly, small birth weight, severe encephalopathy and 3-methylglutaconic aciduria. Their neurological examination was characterised by severe hypertonia and the induction of prolonged clonic movements of the four limbs upon minimal tactile stimulation. METHODS AND RESULTS: Using homozygosity mapping and exome sequencing, we identified a homozygous truncating mutation (p.I562Tfs*23) in CLPB segregating with the disease in this family. CLPB codes for a member of the family of ATPases associated with various cellular activities (AAA(+) proteins) whose function remains unknown. We found that CLPB expression is abolished in fibroblasts from the patients. To investigate the function of this gene, we interfered with the translation of the zebrafish clpb orthologue using an antisense morpholino. The clpb morphants showed an abnormal touch-evoked response with increased swim velocity and tail beat frequency. This motor phenotype is reminiscent of that observed in the patients and is suggestive of increased excitability in neuronal circuits. Interestingly, knocking down clpb reduced the number of inhibitory glycinergic interneurons and increased a population of excitatory glutamatergic neurons in the spinal cord. CONCLUSIONS: Altogether, our study suggests that disruption of CLPB causes a novel form of neonatal encephalopathy associated with 3-methylglutaconic aciduria.


Assuntos
Encefalopatias/genética , Endopeptidase Clp/genética , Estudos de Associação Genética , Erros Inatos do Metabolismo/genética , Microcefalia/genética , Animais , Encefalopatias/diagnóstico , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Exoma , Técnicas de Silenciamento de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Recém-Nascido , Erros Inatos do Metabolismo/diagnóstico , Microcefalia/diagnóstico , Mutação , Linhagem , Fenótipo , Irmãos , Peixe-Zebra
3.
BMC Med Genet ; 15: 139, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524009

RESUMO

BACKGROUND: DAVID syndrome is a rare condition combining anterior pituitary hormone deficiency with common variable immunodeficiency. NFKB2 mutations have recently been identified in patients with ACTH and variable immunodeficiency. A similar mutation was previously found in Nfkb2 in the immunodeficient Lym1 mouse strain, but the effect of the mutation on endocrine function was not evaluated. METHODS: We ascertained six unrelated DAVID syndrome families. We performed whole exome and traditional Sanger sequencing to search for causal genes. Lym1 mice were examined for endocrine developmental anomalies. RESULTS: Mutations in the NFKB2 gene were identified in three of our families through whole exome sequencing, and in a fourth by direct Sanger sequencing. De novo origin of the mutations could be demonstrated in three of the families. All mutations lie near the C-terminus of the protein-coding region, near signals required for processing of NFΚB2 protein by the alternative pathway. Two of the probands had anatomical pituitary anomalies, and one had growth and thyroid hormone as well as ACTH deficiency; these findings have not been previously reported. Two children of one of the probands carried the mutation and have to date exhibited only an immune phenotype. No mutations were found near the C-terminus of NFKB2 in the remaining two probands; whole exome sequencing has been performed for one of these. Lym1 mice, carrying a similar Nfkb2 C-terminal mutation, showed normal pituitary anatomy and expression of proopiomelanocortin (POMC). CONCLUSIONS: We confirm previous findings that mutations near the C-terminus of NFKB2 cause combined endocrine and immunodeficiencies. De novo status of the mutations was confirmed in all cases for which both parents were available. The mutations are consistent with a dominant gain-of-function effect, generating an unprocessed NFKB2 super-repressor protein. We expand the potential phenotype of such NFKB2 mutations to include additional pituitary hormone deficiencies as well as anatomical pituitary anomalies. The lack of an observable endocrine phenotype in Lym1 mice suggests that the endocrine component of DAVID syndrome is either not due to a direct role of NFKB pathways on pituitary development, or else that human and mouse pituitary development differ in its requirements for NFKB pathway function.


Assuntos
Heterogeneidade Genética , Síndromes de Imunodeficiência/genética , Subunidade p52 de NF-kappa B/genética , Hormônios Adeno-Hipofisários/deficiência , Animais , Modelos Animais de Doenças , Feminino , Humanos , Síndromes de Imunodeficiência/patologia , Masculino , Camundongos , Mutação , Linhagem , Pró-Opiomelanocortina
4.
PLoS Genet ; 10(10): e1004772, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356899

RESUMO

Genetics is believed to have an important role in intellectual disability (ID). Recent studies have emphasized the involvement of de novo mutations (DNMs) in ID but the extent to which they contribute to its pathogenesis and the identity of the corresponding genes remain largely unknown. Here, we report a screen for DNMs in subjects with moderate or severe ID. We sequenced the exomes of 41 probands and their parents, and confirmed 81 DNMs affecting the coding sequence or consensus splice sites (1.98 DNMs/proband). We observed a significant excess of de novo single nucleotide substitutions and loss-of-function mutations in these cases compared to control subjects, suggesting that at least a subset of these variations are pathogenic. A total of 12 likely pathogenic DNMs were identified in genes previously associated with ID (ARID1B, CHD2, FOXG1, GABRB3, GATAD2B, GRIN2B, MBD5, MED13L, SETBP1, TBR1, TCF4, WDR45), resulting in a diagnostic yield of ∼29%. We also identified 12 possibly pathogenic DNMs in genes (HNRNPU, WAC, RYR2, SET, EGR1, MYH10, EIF2C1, COL4A3BP, CHMP2A, PPP1CB, VPS4A, PPP2R2B) that have not previously been causally linked to ID. Interestingly, no case was explained by inherited mutations. Protein network analysis indicated that the products of many of these known and candidate genes interact with each other or with products of other ID-associated genes further supporting their involvement in ID. We conclude that DNMs represent a major cause of moderate or severe ID.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Códon sem Sentido , Epilepsia/patologia , Exoma/genética , Mutação da Fase de Leitura , Humanos , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto , Mutação Puntual , Splicing de RNA/genética , Deleção de Sequência
5.
Hum Mutat ; 35(11): 1285-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25130867

RESUMO

Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations.


Assuntos
Catarata/genética , Nanismo Hipofisário/genética , Perda Auditiva Neurossensorial/genética , Isoleucina-tRNA Ligase/genética , Doença de Leigh/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética , Adulto , Sequência de Aminoácidos , Encéfalo/patologia , Catarata/diagnóstico , Consanguinidade , Análise Mutacional de DNA , Nanismo Hipofisário/diagnóstico , Feminino , Genes Recessivos , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Isoleucina-tRNA Ligase/química , Doença de Leigh/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico , Fenótipo , Alinhamento de Sequência , Síndrome
7.
Hum Mol Genet ; 23(1): 90-103, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23956174

RESUMO

An increasing number of genes predisposing to autism spectrum disorders (ASDs) has been identified, many of which are implicated in synaptic function. This 'synaptic autism pathway' notably includes disruption of SYN1 that is associated with epilepsy, autism and abnormal behavior in both human and mice models. Synapsins constitute a multigene family of neuron-specific phosphoproteins (SYN1-3) present in the majority of synapses where they are implicated in the regulation of neurotransmitter release and synaptogenesis. Synapsins I and II, the major Syn isoforms in the adult brain, display partially overlapping functions and defects in both isoforms are associated with epilepsy and autistic-like behavior in mice. In this study, we show that nonsense (A94fs199X) and missense (Y236S and G464R) mutations in SYN2 are associated with ASD in humans. The phenotype is apparent in males. Female carriers of SYN2 mutations are unaffected, suggesting that SYN2 is another example of autosomal sex-limited expression in ASD. When expressed in SYN2  knockout neurons, wild-type human Syn II fully rescues the SYN2 knockout phenotype, whereas the nonsense mutant is not expressed and the missense mutants are virtually unable to modify the SYN2 knockout phenotype. These results identify for the first time SYN2  as a novel predisposing gene for ASD and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies ASD.


Assuntos
Axônios/metabolismo , Axônios/patologia , Transtornos Globais do Desenvolvimento Infantil/genética , Sinapsinas/genética , Vesículas Sinápticas/patologia , Animais , Transtornos Globais do Desenvolvimento Infantil/metabolismo , Códon sem Sentido , Feminino , Predisposição Genética para Doença , Células HeLa , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Neurônios/metabolismo , Vesículas Sinápticas/metabolismo
8.
Neuron ; 80(2): 429-41, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24139043

RESUMO

We analyzed four families that presented with a similar condition characterized by congenital microcephaly, intellectual disability, progressive cerebral atrophy, and intractable seizures. We show that recessive mutations in the ASNS gene are responsible for this syndrome. Two of the identified missense mutations dramatically reduce ASNS protein abundance, suggesting that the mutations cause loss of function. Hypomorphic Asns mutant mice have structural brain abnormalities, including enlarged ventricles and reduced cortical thickness, and show deficits in learning and memory mimicking aspects of the patient phenotype. ASNS encodes asparagine synthetase, which catalyzes the synthesis of asparagine from glutamine and aspartate. The neurological impairment resulting from ASNS deficiency may be explained by asparagine depletion in the brain or by accumulation of aspartate/glutamate leading to enhanced excitability and neuronal damage. Our study thus indicates that asparagine synthesis is essential for the development and function of the brain but not for that of other organs.


Assuntos
Aspartato-Amônia Ligase/deficiência , Aspartato-Amônia Ligase/genética , Encéfalo/enzimologia , Encéfalo/patologia , Predisposição Genética para Doença/genética , Microcefalia/enzimologia , Microcefalia/genética , Adolescente , Animais , Atrofia/complicações , Atrofia/enzimologia , Atrofia/genética , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/complicações , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Camundongos , Camundongos Transgênicos , Microcefalia/complicações , Microcefalia/patologia , Mutação de Sentido Incorreto/genética , Linhagem , Síndrome
9.
Am J Hum Genet ; 93(4): 765-72, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24075189

RESUMO

Anophthalmia and/or microphthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac defects are the main features of PDAC syndrome. Recessive mutations in STRA6, encoding a membrane receptor for the retinol-binding protein, have been identified in some cases with PDAC syndrome, although many cases have remained unexplained. Using whole-exome sequencing, we found that two PDAC-syndrome-affected siblings, but not their unaffected sibling, were compound heterozygous for nonsense (c.355C>T [p.Arg119(∗)]) and frameshift (c.1201_1202insCT [p.Ile403Serfs(∗)15]) mutations in retinoic acid receptor beta (RARB). Transfection studies showed that p.Arg119(∗) and p.Ile403Serfs(∗)15 altered RARB had no transcriptional activity in response to ligands, confirming that the mutations induced a loss of function. We then sequenced RARB in 15 subjects with anophthalmia and/or microphthalmia and at least one other feature of PDAC syndrome. Surprisingly, three unrelated subjects with microphthalmia and diaphragmatic hernia showed de novo missense mutations affecting the same codon; two of the subjects had the c.1159C>T (Arg387Cys) mutation, whereas the other one carried the c.1159C>A (p.Arg387Ser) mutation. We found that compared to the wild-type receptor, p.Arg387Ser and p.Arg387Cys altered RARB induced a 2- to 3-fold increase in transcriptional activity in response to retinoic acid ligands, suggesting a gain-of-function mechanism. Our study thus suggests that both recessive and dominant mutations in RARB cause anophthalmia and/or microphthalmia and diaphragmatic hernia, providing further evidence of the crucial role of the retinoic acid pathway during eye development and organogenesis.


Assuntos
Hérnia Diafragmática/genética , Microftalmia/genética , Mutação , Receptores do Ácido Retinoico/genética , Adolescente , Anoftalmia/genética , Anoftalmia/metabolismo , Exoma , Feminino , Hérnia Diafragmática/metabolismo , Humanos , Recém-Nascido , Masculino , Microftalmia/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas de Ligação ao Retinol/genética , Proteínas de Ligação ao Retinol/metabolismo , Tretinoína/metabolismo
10.
J Med Genet ; 50(11): 740-4, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23687350

RESUMO

BACKGROUND: Mutations in TSC1 or TSC2 cause the tuberous sclerosis complex (TSC), a disorder characterised by the development of hamartomas or benign tumours in various organs as well as the variable presence of epilepsy, intellectual disability (ID) and autism. TSC1, TSC2 and the recently described protein TBC1D7 form a complex that inhibits mTORC1 signalling and limits cell growth. Although it has been proposed that mutations in TBC1D7 might also cause TSC, loss of its function has not yet been documented in humans. METHODS AND RESULTS: We used homozygosity mapping and exome sequencing to study a consanguineous family with ID and megalencephaly but without any specific features of TSC. We identified only one rare coding variant, c.538delT:p.Y180fsX1 in TBC1D7, in the regions of homozygosity shared by the affected siblings. We show that this mutation abolishes TBC1D7 expression and is associated with increased mTORC1 signalling in cells of the affected individuals. CONCLUSIONS: Our study suggests that disruption of TBC1D7 causes ID but without the other typical features found in TSC. Although megalencephaly is not commonly observed in TSC, it has been associated with mTORC1 activation. Our observation thus reinforces the relationship between this pathway and the development of megalencephaly.


Assuntos
Proteínas de Transporte/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Esclerose Tuberosa/genética , Criança , Pré-Escolar , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Linhagem
11.
J Clin Endocrinol Metab ; 98(2): 736-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23293326

RESUMO

CONTEXT: A 4-year-old girl and a 4-month-old boy presented with hypoglycemia, normal electrolytes, low cortisol, and high ACTH. A diagnosis of primary adrenal insufficiency was made and initial treatment was with glucocorticoids and mineralocorticoids. The genes known to cause ACTH resistance were normal. Whole exome sequencing revealed that the girl was compound heterozygous for POMC mutations: one previously described null allele and one novel p.R8C mutation in the sequence encoding ACTH and α-MSH. The boy was homozygous for the p.R8C mutation. HYPOTHESIS: The p.R8C ACTH mutant is immunoreactive, but the mutant peptides, ACTH-R8C and α-MSH-R8C, are bioinactive. METHODS: Methods included whole exome sequencing, Sanger sequencing, peptide synthesis, ACTH immunoradiometric assay, hormone binding, and activation assays in cells expressing melanocortin receptors. RESULTS: ACTH-R8C was immunoreactive but failed to bind and activate cAMP production in melanocortin-2 receptor (MC2R)-expressing cells, and α-MSH-R8C failed to bind and stimulate cAMP production in MC1R- and MC4R-expressing cells. CONCLUSION: These are the first documented cases of glucocorticoid deficiency due to the secretion of an ACTH molecule that lacks biological bioactivity but conserves immunoreactivity. POMC mutations should thus be considered in patients presenting with apparent ACTH resistance. Our findings also highlight a limitation to immunoassay-based diagnostics and demonstrate the value of genetic analysis. Establishing the molecular etiology of the disorder in our patients allowed cessation of the unnecessary mineralocorticoids. Finally, discovery of this mutation indicates that in humans, the amino acid sequence His(6)Phe(7)Arg(8)Trp(9) is important not only for cAMP activation but also for ACTH binding to MC2R.


Assuntos
Doença de Addison/genética , Hormônio Adrenocorticotrópico/genética , Glucocorticoides/deficiência , Hipoglicemia/genética , Pré-Escolar , Feminino , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mutação , Receptor Tipo 2 de Melanocortina/genética , alfa-MSH/genética
12.
Hum Mutat ; 34(1): 103-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23033317

RESUMO

Mutations in the gene encoding the iron-sulfur-containing DNA helicase DDX11 (ChlR1) were recently identified as a cause of a new recessive cohesinopathy, Warsaw breakage syndrome (WABS), in a single patient with severe microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Here, using homozygosity mapping in a Lebanese consanguineous family followed by exome sequencing, we identified a novel homozygous mutation (c.788G>A [p.R263Q]) in DDX11 in three affected siblings with severe intellectual disability and many of the congenital abnormalities reported in the WABS original case. Cultured lymphocytes from the patients showed increased mitomycin C-induced chromosomal breakage, as found in WABS. Biochemical studies of purified recombinant DDX11 indicated that the p.R263Q mutation impaired DDX11 helicase activity by perturbing its DNA binding and DNA-dependent ATP hydrolysis. Our findings thus confirm the involvement of DDX11 in WABS, describe its phenotypical spectrum, and provide novel insight into the structural requirement for DDX11 activity.


Assuntos
Anormalidades Múltiplas/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Anormalidades Múltiplas/patologia , Sequência de Aminoácidos , Sequência de Bases , Quebra Cromossômica , Consanguinidade , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Exoma/genética , Saúde da Família , Feminino , Humanos , Deficiência Intelectual , Masculino , Linhagem , Análise de Sequência de DNA , Síndrome
13.
Hum Mutat ; 34(2): 385-94, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23161826

RESUMO

De novo mutations in SYNGAP1, which codes for a RAS/RAP GTP-activating protein, cause nonsyndromic intellectual disability (NSID). All disease-causing point mutations identified until now in SYNGAP1 are truncating, raising the possibility of an association between this type of mutations and NSID. Here, we report the identification of the first pathogenic missense mutations (c.1084T>C [p.W362R], c.1685C>T [p.P562L]) and three novel truncating mutations (c.283dupC [p.H95PfsX5], c.2212_2213del [p.S738X], and (c.2184del [p.N729TfsX31]) in SYNGAP1 in patients with NSID. A subset of these patients also showed ataxia, autism, and a specific form of generalized epilepsy that can be refractory to treatment. All of these mutations occurred de novo, except c.283dupC, which was inherited from a father who is a mosaic. Biolistic transfection of wild-type SYNGAP1 in pyramidal cells from cortical organotypic cultures significantly reduced activity-dependent phosphorylated extracellular signal-regulated kinase (pERK) levels. In contrast, constructs expressing p.W362R, p.P562L, or the previously described p.R579X had no significant effect on pERK levels. These experiments suggest that the de novo missense mutations, p.R579X, and possibly all the other truncating mutations in SYNGAP1 result in a loss of its function. Moreover, our study confirms the involvement of SYNGAP1 in autism while providing novel insight into the epileptic manifestations associated with its disruption.


Assuntos
Transtorno Autístico/genética , Epilepsia/genética , Haploinsuficiência , Deficiência Intelectual/genética , Proteínas Ativadoras de ras GTPase/genética , Adolescente , Sequência de Aminoácidos , Transtorno Autístico/fisiopatologia , Western Blotting , Criança , Pré-Escolar , Clonagem Molecular , Epilepsia/fisiopatologia , Exoma , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Células HEK293 , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Fosforilação , Conformação Proteica , Análise de Sequência de DNA , Transfecção , Proteínas Ativadoras de ras GTPase/metabolismo
14.
J Med Genet ; 49(10): 636-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23012439

RESUMO

BACKGROUND: Joubert syndrome (JBTS) is a predominantly autosomal recessive disorder characterised by a distinctive midhindbrain malformation, oculomotor apraxia, breathing abnormalities and developmental delay. JBTS is genetically heterogeneous, involving genes required for formation and function of non-motile cilia. Here we investigate the genetic basis of JBTS in 12 French-Canadian (FC) individuals. METHODS AND RESULTS: Exome sequencing in all subjects showed that six of them carried rare compound heterozygous mutations in CC2D2A or C5ORF42, known JBTS genes. In addition, three individuals (two families) were compound heterozygous for the same rare mutations in TMEM231(c.12T>A[p.Tyr4*]; c.625G>A[p.Asp209Asn]). All three subjects showed a severe neurological phenotype and variable presence of polydactyly, retinopathy and renal cysts. These mutations were not detected among 385 FC controls. TMEM231 has been previously shown to localise to the ciliary transition zone, and to interact with several JBTS gene products in a complex involved in the formation of the diffusion barrier between the cilia and plasma membrane. siRNA knockdown of TMEM231 was also shown to affect barrier integrity, resulting in a reduction of cilia formation and ciliary localisation of signalling receptors. CONCLUSIONS: Our data suggest that mutations in TMEM231 cause JBTS, reinforcing the relationship between this condition and the disruption of the barrier at the ciliary transition zone.


Assuntos
Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas , Adolescente , Adulto , Sequência de Aminoácidos , Encéfalo/patologia , Canadá/etnologia , Doenças Cerebelares/diagnóstico , Cerebelo/anormalidades , Criança , Pré-Escolar , Exoma , Anormalidades do Olho/diagnóstico , Feminino , Ordem dos Genes , Humanos , Lactente , Doenças Renais Císticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Linhagem , Retina/anormalidades , Alinhamento de Sequência , Adulto Jovem
15.
Am J Hum Genet ; 90(4): 693-700, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22425360

RESUMO

Joubert syndrome (JBTS) is an autosomal-recessive disorder characterized by a distinctive mid-hindbrain malformation, developmental delay with hypotonia, ocular-motor apraxia, and breathing abnormalities. Although JBTS was first described more than 40 years ago in French Canadian siblings, the causal mutations have not yet been identified in this family nor in most French Canadian individuals subsequently described. We ascertained a cluster of 16 JBTS-affected individuals from 11 families living in the Lower St. Lawrence region. SNP genotyping excluded the presence of a common homozygous mutation that would explain the clustering of these individuals. Exome sequencing performed on 15 subjects showed that nine affected individuals from seven families (including the original JBTS family) carried rare compound-heterozygous mutations in C5ORF42. Two missense variants (c.4006C>T [p.Arg1336Trp] and c.4690G>A [p.Ala1564Thr]) and a splicing mutation (c.7400+1G>A), which causes exon skipping, were found in multiple subjects that were not known to be related, whereas three other truncating mutations (c.6407del [p.Pro2136Hisfs*31], c.4804C>T [p.Arg1602*], and c.7477C>T [p.Arg2493*]) were identified in single individuals. None of the unaffected first-degree relatives were compound heterozygous for these mutations. Moreover, none of the six putative mutations were detected among 477 French Canadian controls. Our data suggest that mutations in C5ORF42 explain a large portion of French Canadian individuals with JBTS.


Assuntos
Doenças Cerebelares/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Anormalidades Múltiplas , Adulto , Sequência de Bases , Canadá , Cerebelo/anormalidades , Criança , Pré-Escolar , Exoma , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Retina/anormalidades
16.
Hum Mutat ; 32(10): 1114-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21681853

RESUMO

Hajdu-Cheney syndrome (HCS) is a rare genetic disorder whose hallmark is acro-osteolysis, shortening of terminal phalanges, and generalized osteoporosis. We assembled a cohort of seven families with the condition and performed whole exome resequencing on a selected set of affected patients. One protein-coding gene, NOTCH2, carried heterozygous truncating variants in all patients and their affected family members. Our results replicate recently published studies of HCS and further support this as the causal gene for the disorder. In total, we identified five novel and one previously reported mutation, all clustered near the carboxyl terminus of the gene, suggesting an allele specific genotype-phenotype effect since other mutations in NOTCH2 have been reported to cause a form of Alagille syndrome. Notch-mediated signaling is known to play a role in bone metabolism. Our results support a potential therapeutic role for Notch pathways in treatment of osteoporosis.


Assuntos
Síndrome de Hajdu-Cheney/genética , Mutação , Receptor Notch2/genética , Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/genética , Exoma , Face/anormalidades , Saúde da Família , Feminino , Mãos , Deformidades Congênitas da Mão/diagnóstico por imagem , Humanos , Masculino , Linhagem , Radiografia
17.
Nat Genet ; 43(4): 360-4, 2011 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-21358631

RESUMO

Meier-Gorlin syndrome is a rare autosomal recessive genetic condition whose primary clinical hallmarks include small stature, small external ears and small or absent patellae. Using marker-assisted mapping in multiple families from a founder population and traditional coding exon sequencing of positional candidate genes, we identified three different mutations in the gene encoding ORC4, a component of the eukaryotic origin recognition complex, in five individuals with Meier-Gorlin syndrome. In two such individuals that were negative for mutations in ORC4, we found potential mutations in ORC1 and CDT1, two other genes involved in origin recognition. ORC4 is well conserved in eukaryotes, and the yeast equivalent of the human ORC4 missense mutation was shown to be pathogenic in functional assays of cell growth. This is the first report, to our knowledge, of a germline mutation in any gene of the origin recognition complex in a vertebrate organism.


Assuntos
Proteínas de Ciclo Celular/genética , Mutação , Complexo de Reconhecimento de Origem/genética , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Microtia Congênita , Consanguinidade , Sequência Conservada , DNA/genética , Orelha/anormalidades , Orelha/patologia , Feminino , Efeito Fundador , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Haplótipos , Humanos , Masculino , Micrognatismo/genética , Micrognatismo/patologia , Dados de Sequência Molecular , Patela/anormalidades , Patela/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Homologia de Sequência de Aminoácidos
18.
Hum Mol Genet ; 20(12): 2297-307, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21441247

RESUMO

Several genes predisposing to autism spectrum disorders (ASDs) with or without epilepsy have been identified, many of which are implicated in synaptic function. Here we report a Q555X mutation in synapsin 1 (SYN1), an X-linked gene encoding for a neuron-specific phosphoprotein implicated in the regulation of neurotransmitter release and synaptogenesis. This nonsense mutation was found in all affected individuals from a large French-Canadian family segregating epilepsy and ASDs. Additional mutations in SYN1 (A51G, A550T and T567A) were found in 1.0 and 3.5% of French-Canadian individuals with autism and epilepsy, respectively. The majority of these SYN1 mutations were clustered in the proline-rich D-domain which is substrate of multiple protein kinases. When expressed in synapsin I (SynI) knockout (KO) neurons, all the D-domain mutants failed in rescuing the impairment in the size and trafficking of synaptic vesicle pools, whereas the wild-type human SynI fully reverted the KO phenotype. Moreover, the nonsense Q555X mutation had a dramatic impact on phosphorylation by MAPK/Erk and neurite outgrowth, whereas the missense A550T and T567A mutants displayed impaired targeting to nerve terminals. These results demonstrate that SYN1 is a novel predisposing gene to ASDs, in addition to epilepsy, and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies the pathogenesis of both diseases.


Assuntos
Transtorno Autístico/genética , Códon sem Sentido/genética , Epilepsias Parciais/genética , Sinapses/patologia , Sinapsinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Técnicas de Inativação de Genes , Humanos , Immunoblotting , Escore Lod , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neurônios/metabolismo , Linhagem , Fosforilação , Quebeque , Análise de Sequência de DNA , Sinapses/genética
19.
Am J Hum Genet ; 87(1): 40-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598275

RESUMO

Primary microcephaly is a rare condition in which brain size is substantially diminished without other syndromic abnormalities. Seven autosomal loci have been genetically mapped, and the underlying causal genes have been identified for MCPH1, MCPH3, MCPH5, MCPH6, and MCPH7 but not for MCPH2 or MCPH4. The known genes play roles in mitosis and cell division. We ascertained three families from an Eastern Canadian subpopulation, each with one microcephalic child. Homozygosity analysis in two families using genome-wide dense SNP genotyping supported linkage to the published MCPH4 locus on chromosome 15q21.1. Sequencing of coding exons of candidate genes in the interval identified a nonconservative amino acid change in a highly conserved residue of the centrosomal protein CEP152. The affected children in these two families were both homozygous for this missense variant. The third affected child was compound heterozygous for the missense mutation plus a second, premature-termination mutation truncating a third of the protein and preventing its localization to centrosomes in transfected cells. CEP152 is the putative mammalian ortholog of Drosphila asterless, mutations in which affect mitosis in the fly. Published data from zebrafish are also consistent with a role of CEP152 in centrosome function. By RT-PCR, CEP152 is expressed in the embryonic mouse brain, similar to other MCPH genes. Like some other MCPH genes, CEP152 shows signatures of positive selection in the human lineage. CEP152 is a strong candidate for the causal gene underlying MCPH4 and may be an important gene in the evolution of human brain size.


Assuntos
Proteínas de Ciclo Celular/genética , Microcefalia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Linhagem
20.
Neurobiol Dis ; 36(1): 181-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19632331

RESUMO

Myotonic dystrophy type 1 (DM1) and type II (DM2) are dominantly inherited multisystemic disorders. DM1 is triggered by the pathological expansion of a (CTG)(n) triplet repeat in the DMPK gene, whereas a (CCTG)(n) tetranucleotide repeat expansion in the ZNF9 gene causes DM2. Both forms of the disease share several features, even though the causative mutations and the loci involved differ. Important distinctions exist, such as the lack of a congenital form of DM2. The reason for these disparities is unknown. In this study, we characterized skeletal muscle satellite cells from adult DM2 patients to provide an in vitro model for the disease. We used muscle cells from DM1 biopsies as a comparison tool. Our main finding is that DM2 satellite cells differentiate normally in vitro. Myotube formation was similar to unaffected controls. In contrast, fetal DM1 cells were deficient in that ability. Consistent with this observation, the myogenic program in DM2 was intact but is compromised in fetal DM1 cells. Although expression of the ZNF9 gene was enhanced in DM2 during differentiation, the levels of the ZNF9 protein were substantially reduced. This suggests that the presence of a large CCTG tract impairs the translation of the ZNF9 mRNA. Additionally, DM2 muscle biopsies displayed the altered splicing of the insulin receptor mRNA, correlating with insulin resistance in the patients. Finally, CUGBP1 steady-state protein levels were unchanged in DM2 cultured muscle cells and in DM2 muscle biopsies relative to controls, whereas they are increased in DM1 muscle cells. Our findings suggest that the myogenic program throughout muscle development and tissue regeneration is intact in DM2.


Assuntos
Diferenciação Celular/genética , Músculo Esquelético/patologia , Transtornos Miotônicos/classificação , Transtornos Miotônicos/patologia , Células Satélites de Músculo Esquelético/fisiologia , Adulto , Processamento Alternativo/genética , Análise de Variância , Proteínas CELF1 , Células Cultivadas , Feminino , Feto , Regulação da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Miotonina Proteína Quinase , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Expansão das Repetições de Trinucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA