Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6000, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019846

RESUMO

Type II innate lymphoid cells (ILC2s) maintain homeostasis and barrier integrity in mucosal tissues. In both mice and humans, ILC2s poorly reconstitute after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Determining the mechanisms involved in their impaired reconstitution could improve transplant outcomes. By integrating single-cell chromatin and transcriptomic analyses of transplanted ILC2s, we identify a previously unreported population of converted ILC1-like cells in the mouse small intestine post-transplant. Exposure of ILC2s to proinflammatory cytokines resulted in a mixed ILC1-ILC2 phenotype but was able to convert only a small population of ILC2s to ILC1s, which were found post-transplant. Whereas ILC2s protected against acute graft-versus-host disease (aGVHD) mediated mortality, infusion of proinflammatory cytokine-exposed ILC2s accelerated aGvHD. Interestingly, murine ILC2 reconstitution post-HSCT is decreased in the presence of alloreactive T cells. Finally, peripheral blood cells from human patients with aGvHD have an altered ILC2-associated chromatin landscape compared to transplanted controls. These data demonstrate that following transplantation ILC2s convert to a pro-pathogenic population with an ILC1-like chromatin state and provide insights into the contribution of ILC plasticity to the impaired reconstitution of ILC2 cells, which is one of several potential mechanisms for the poor reconstitution of these important cells after allo-HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Imunidade Inata , Linfócitos , Camundongos Endogâmicos C57BL , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/métodos , Animais , Humanos , Doença Enxerto-Hospedeiro/imunologia , Camundongos , Linfócitos/imunologia , Citocinas/metabolismo , Plasticidade Celular , Feminino , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos BALB C , Cromatina/metabolismo
2.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750021

RESUMO

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Núcleo Celular , Cromatina , Células-Tronco Mesenquimais , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Citocalasina D/farmacologia , Histonas/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Camundongos , Montagem e Desmontagem da Cromatina
4.
Front Oncol ; 13: 1099550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793594

RESUMO

Ewing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.

5.
Bioessays ; 44(7): e2200092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35578768
6.
Genome Res ; 31(12): 2327-2339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815311

RESUMO

Chromatin accessibility states that influence gene expression and other nuclear processes can be altered in disease. The constellation of transcription factors and chromatin regulatory complexes in cells results in characteristic patterns of chromatin accessibility. The study of these patterns in tissues has been limited because existing chromatin accessibility assays are ineffective for archival formalin-fixed, paraffin-embedded (FFPE) tissues. We have developed a method to efficiently extract intact chromatin from archival tissue via enhanced cavitation with a nanodroplet reagent consisting of a lipid shell with a liquid perfluorocarbon core. Inclusion of nanodroplets during the extraction of chromatin from FFPE tissues enhances the recovery of intact accessible and nucleosome-bound chromatin. We show that the addition of nanodroplets to the chromatin accessibility assay formaldehyde-assisted isolation of regulatory elements (FAIRE), does not affect the accessible chromatin signal. Applying the technique to FFPE human tumor xenografts, we identified tumor-relevant regions of accessible chromatin shared with those identified in primary tumors. Further, we deconvoluted non-tumor signal to identify cellular components of the tumor microenvironment. Incorporation of this method of enhanced cavitation into FAIRE offers the potential for extending chromatin accessibility to clinical diagnosis and personalized medicine, while also enabling the exploration of gene regulatory mechanisms in archival samples.

7.
Mol Cancer Res ; 18(11): 1685-1698, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32753473

RESUMO

Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant in vitro model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/genética , Feminino , Humanos
9.
PLoS Pathog ; 14(9): e1007267, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212584

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of three human malignancies, the endothelial cell cancer Kaposi's sarcoma, and two B cell cancers, Primary Effusion Lymphoma and multicentric Castleman's disease. KSHV has latent and lytic phases of the viral life cycle, and while both contribute to viral pathogenesis, lytic proteins contribute to KSHV-mediated oncogenesis. Reactivation from latency is driven by the KSHV lytic gene transactivator RTA, and RTA transcription is controlled by epigenetic modifications. To identify host chromatin-modifying proteins that are involved in the latent to lytic transition, we screened a panel of inhibitors that target epigenetic regulatory proteins for their ability to stimulate KSHV reactivation. We found several novel regulators of viral reactivation: an inhibitor of Bmi1, PTC-209, two additional histone deacetylase inhibitors, Romidepsin and Panobinostat, and the bromodomain inhibitor (+)-JQ1. All of these compounds stimulate lytic gene expression, viral genome replication, and release of infectious virions. Treatment with Romidepsin, Panobinostat, and PTC-209 induces histone modifications at the RTA promoter, and results in nucleosome depletion at this locus. Finally, silencing Bmi1 induces KSHV reactivation, indicating that Bmi1, a member of the Polycomb repressive complex 1, is critical for maintaining KSHV latency.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Herpesvirus Humano 8/fisiologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Depsipeptídeos/farmacologia , Epigênese Genética/efeitos dos fármacos , Genoma Viral/efeitos dos fármacos , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Compostos Heterocíclicos com 2 Anéis/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/fisiologia , Panobinostat/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/fisiologia , Regiões Promotoras Genéticas , Interferência de RNA , Tiazóis/farmacologia , Transativadores/genética , Transativadores/fisiologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/genética , Latência Viral/genética
10.
Biochemistry ; 57(19): 2756-2761, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29658277

RESUMO

One of the most sensitive, time-consuming, and variable steps of chromatin immunoprecipitation (ChIP) is chromatin sonication. Traditionally, this process can take hours to properly sonicate enough chromatin for multiple ChIP assays. Further, the length of sheared DNA is often inconsistent. In order to faithfully measure chemical and structural changes at the chromatin level, sonication needs to be reliable. Thus, chromatin fragmentation by sonication represents a significant bottleneck to downstream quantitative analysis. To improve the consistency and efficiency of chromatin sonication, we developed and tested a cavitation enhancing reagent based on sonically active nanodroplets. Here, we show that nanodroplets increase sonication efficiency by 16-fold and provide more consistent levels of chromatin fragmentation. Using the previously characterized chromatin in vivo assay (CiA) platform, we generated two distinct chromatin states in order to test nanodroplet-assisted sonication sensitivity in measuring post-translational chromatin marks. By comparing euchromatin to chemically induced heterochromatin at the same CiA:Oct4 locus, we quantitatively measure the capability of our new sonication technique to resolve differences in chromatin structure. We confirm that nanodroplet-assisted sonication results are indistinguishable from those of samples processed with traditional sonication in downstream applications. While the processing time for each sample was reduced from 38.4 to 2.3 min, DNA fragment distribution sizes were significantly more consistent with a coefficient of variation 2.7 times lower for samples sonicated in the presence of nanodroplets. In conclusion, sonication utilizing the nanodroplet cavitation enhancement reagent drastically reduces the amount of processing time and provides consistently fragmented chromatin of high quality for downstream applications.


Assuntos
Imunoprecipitação da Cromatina/métodos , Fragmentação do DNA/efeitos da radiação , DNA/genética , Sonicação/métodos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/efeitos da radiação , DNA/química , DNA/efeitos da radiação , Eucromatina/efeitos da radiação , Heterocromatina/efeitos da radiação , Camundongos , Nanopartículas/química , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética
12.
Proc Natl Acad Sci U S A ; 113(11): 3018-23, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929321

RESUMO

Mutations in chromatin-modifying proteins and transcription factors are commonly associated with a wide variety of cancers. Through gain- or loss-of-function, these mutations may result in characteristic alterations of accessible chromatin, indicative of shifts in the landscape of regulatory elements genome-wide. The identification of compounds that reverse a specific chromatin signature could lead to chemical probes or potential therapies. To explore whether chromatin accessibility could serve as a platform for small molecule screening, we adapted formaldehyde-assisted isolation of regulatory elements (FAIRE), a chemical method to enrich for nucleosome-depleted genomic regions, as a high-throughput, automated assay. After demonstrating the validity and robustness of this approach, we applied this method to screen an epigenetically targeted small molecule library by evaluating regions of aberrant nucleosome depletion mediated by EWSR1-FLI1, the chimeric transcription factor critical for the bone and soft tissue tumor Ewing sarcoma. As a class, histone deacetylase inhibitors were greatly overrepresented among active compounds. These compounds resulted in diminished accessibility at targeted sites by disrupting transcription of EWSR1-FLI1. Capitalizing on precise differences in chromatin accessibility for drug discovery efforts offers significant advantages because it does not depend on the a priori selection of a single molecular target and may detect novel biologically relevant pathways.


Assuntos
Cromatina/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Cromatina/ultraestrutura , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/isolamento & purificação , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Terapia de Alvo Molecular , Nucleossomos/ultraestrutura , Proteínas de Fusão Oncogênica/genética , Panobinostat , Fenilbutiratos/farmacologia , Sarcoma de Ewing/patologia , Bibliotecas de Moléculas Pequenas , Vorinostat
13.
Nat Chem Biol ; 12(3): 180-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26807715

RESUMO

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Assuntos
Oligopeptídeos/farmacologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Complexo Repressor Polycomb 1/genética , Animais , Disponibilidade Biológica , Biotinilação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Regulação da Expressão Gênica/genética , Humanos , Isomerismo , Ligases , Masculino , Metilação , Camundongos , Modelos Moleculares , Complexo Repressor Polycomb 1/biossíntese , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
ACS Chem Biol ; 11(3): 722-8, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26317848

RESUMO

L3MBTL3 recognizes mono- and dimethylated lysine residues on histone tails. The recently reported X-ray cocrystal structures of the chemical probe UNC1215 and inhibitor UNC2533 bound to the methyl-lysine reading MBT domains of L3MBTL3 demonstrate a unique and flexible 2:2 dimer mode of recognition. In this study, we describe our in vitro analysis of L3MBTL3 dimerization via its MBT domains and additionally show that this dimerization occurs within a cellular context in the absence of small molecule ligands. Furthermore, mutations to the first and second MBT domains abrogated L3MBTL3 dimerization both in vitro and in cells. These observations are consistent with the hypothesis that L3MBTL3 engages methylated histone tails as a dimer while carrying out its normal function and provides an explanation for the presence of repeated MBT domains within L3MBTL3.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Benzamidas , Biotina , Sistema Livre de Células , Proteínas de Ligação a DNA/genética , Células HeLa , Histonas , Humanos , Ligantes , Estrutura Molecular , Mutação , Piperidinas , Domínios Proteicos , Multimerização Proteica
15.
J Biol Chem ; 290(43): 26088-102, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26338712

RESUMO

G9a and GLP lysine methyltransferases form a heterodimeric complex that is responsible for the majority of histone H3 lysine 9 mono- and di-methylation (H3K9me1/me2). Widely interspaced zinc finger (WIZ) associates with the G9a-GLP protein complex, but its role in mediating lysine methylation is poorly defined. Here, we show that WIZ regulates global H3K9me2 levels by facilitating the interaction of G9a with chromatin. Disrupting the association of G9a-GLP with chromatin by depleting WIZ resulted in altered gene expression and protein-protein interactions that were distinguishable from that of small molecule-based inhibition of G9a/GLP, supporting discrete functions of the G9a-GLP-WIZ chromatin complex in addition to H3K9me2 methylation.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Metiltransferases/metabolismo , Imunoprecipitação da Cromatina , Metilação de DNA , Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/genética , Ligação Proteica
16.
PLoS One ; 10(7): e0133014, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186461

RESUMO

A perfluorocarbon nanodroplet formulation is shown to be an effective cavitation enhancement agent, enabling rapid and consistent fragmentation of genomic DNA in a standard ultrasonic water bath. This nanodroplet-enhanced method produces genomic DNA libraries and next-generation sequencing results indistinguishable from DNA samples fragmented in dedicated commercial acoustic sonication equipment, and with higher throughput. This technique thus enables widespread access to fast bench-top genomic DNA fragmentation.


Assuntos
Fragmentação do DNA/efeitos da radiação , Sonicação/métodos , DNA Fúngico , Microbolhas , Sonicação/instrumentação
17.
Cancer Res ; 75(7): 1244-54, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25634211

RESUMO

Endothelial-to-mesenchymal transition (EndMT) occurs during development and underlies the pathophysiology of multiple diseases. In tumors, unscheduled EndMT generates cancer-associated myofibroblasts that fuel inflammation and fibrosis, and may contribute to vascular dysfunction that promotes tumor progression. We report that freshly isolated subpopulations of tumor-specific endothelial cells (TEC) from a spontaneous mammary tumor model undergo distinct forms of EndMT in response to TGFß stimulation. Although some TECs strikingly upregulate α smooth muscle actin (SMA), a principal marker of EndMT and activated myofibroblasts, counterpart normal mammary gland endothelial cells (NEC) showed little change in SMA expression after TGFß treatment. Compared with NECs, SMA(+) TECs were 40% less motile in wound-healing assays and formed more stable vascular-like networks in vitro when challenged with TGFß. Lineage tracing using ZsGreen(Cdh5-Cre) reporter mice confirmed that only a fraction of vessels in breast tumors contain SMA(+) TECs, suggesting that not all endothelial cells (EC) respond identically to TGFß in vivo. Indeed, examination of 84 TGFß-regulated target genes revealed entirely different genetic signatures in TGFß-stimulated NEC and TEC cultures. Finally, we found that basic FGF (bFGF) exerts potent inhibitory effects on many TGFß-regulated genes but operates in tandem with TGFß to upregulate others. ECs challenged with TGFß secrete bFGF, which blocks SMA expression in secondary cultures, suggesting a cell-autonomous or lateral-inhibitory mechanism for impeding mesenchymal differentiation. Together, our results suggest that TGFß-driven EndMT produces a spectrum of EC phenotypes with different functions that could underlie the plasticity and heterogeneity of the tumor vasculature.


Assuntos
Células Endoteliais/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Separação Celular , Transdiferenciação Celular , Feminino , Fator 2 de Crescimento de Fibroblastos/fisiologia , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos , Transplante de Neoplasias
18.
Blood ; 125(2): 346-57, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25395428

RESUMO

Enhancer of zeste homolog 2 (EZH2) and related EZH1 control gene expression and promote tumorigenesis via methylating histone H3 at lysine 27 (H3K27). These methyltransferases are ideal therapeutic targets due to their frequent hyperactive mutations and overexpression found in cancer, including hematopoietic malignancies. Here, we characterized a set of small molecules that allow pharmacologic manipulation of EZH2 and EZH1, which include UNC1999, a selective inhibitor of both enzymes, and UNC2400, an inactive analog compound useful for assessment of off-target effect. UNC1999 suppresses global H3K27 trimethylation/dimethylation (H3K27me3/2) and inhibits growth of mixed lineage leukemia (MLL)-rearranged leukemia cells. UNC1999-induced transcriptome alterations overlap those following knockdown of embryonic ectoderm development, a common cofactor of EZH2 and EZH1, demonstrating UNC1999's on-target inhibition. Mechanistically, UNC1999 preferentially affects distal regulatory elements such as enhancers, leading to derepression of polycomb targets including Cdkn2a. Gene derepression correlates with a decrease in H3K27me3 and concurrent gain in H3K27 acetylation. UNC2400 does not induce such effects. Oral administration of UNC1999 prolongs survival of a well-defined murine leukemia model bearing MLL-AF9. Collectively, our study provides the detailed profiling for a set of chemicals to manipulate EZH2 and EZH1 and establishes specific enzymatic inhibition of polycomb repressive complex 2 (PRC2)-EZH2 and PRC2-EZH1 by small-molecule compounds as a novel therapeutics for MLL-rearranged leukemia.


Assuntos
Antineoplásicos/farmacologia , Leucemia Aguda Bifenotípica/enzimologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Animais , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos/farmacologia , Immunoblotting , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
19.
ChemMedChem ; 9(3): 549-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443078

RESUMO

Here we report the design, synthesis, and biochemical characterization of a new chemical tool, UNC0965. UNC0965 is a biotinylated version of our previously reported G9a chemical probe, UNC0638. Importantly, UNC0965 maintains high in vitro potency and is cell penetrant. The biotinylated tag of UNC0965 enables "chemiprecipitation" of G9a from whole cell lysates. Further, the cell penetrance of UNC0965 allowed us to explore the localization of G9a on chromatin both in vitro and in vivo through chemical inhibitor-based chromatin immunoprecipitation (chem-ChIP).


Assuntos
Biotina/análogos & derivados , Precipitação Química , Imunoprecipitação da Cromatina/métodos , Antígenos de Histocompatibilidade/química , Histona-Lisina N-Metiltransferase/química , Quinazolinas/química , Biotina/síntese química , Biotina/química , Biotinilação , Cromatina/enzimologia , Células HEK293 , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Quinazolinas/síntese química
20.
ACS Chem Biol ; 8(6): 1324-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23614352

RESUMO

EZH2 or EZH1 is the catalytic subunit of the polycomb repressive complex 2 that catalyzes methylation of histone H3 lysine 27 (H3K27). The trimethylation of H3K27 (H3K27me3) is a transcriptionally repressive post-translational modification. Overexpression of EZH2 and hypertrimethylation of H3K27 have been implicated in a number of cancers. Several selective inhibitors of EZH2 have been reported recently. Herein we disclose UNC1999, the first orally bioavailable inhibitor that has high in vitro potency for wild-type and mutant EZH2 as well as EZH1, a closely related H3K27 methyltransferase that shares 96% sequence identity with EZH2 in their respective catalytic domains. UNC1999 was highly selective for EZH2 and EZH1 over a broad range of epigenetic and non-epigenetic targets, competitive with the cofactor SAM and non-competitive with the peptide substrate. This inhibitor potently reduced H3K27me3 levels in cells and selectively killed diffused large B cell lymphoma cell lines harboring the EZH2(Y641N) mutant. Importantly, UNC1999 was orally bioavailable in mice, making this inhibitor a valuable tool for investigating the role of EZH2 and EZH1 in chronic animal studies. We also designed and synthesized UNC2400, a close analogue of UNC1999 with potency >1,000-fold lower than that of UNC1999 as a negative control for cell-based studies. Finally, we created a biotin-tagged UNC1999 (UNC2399), which enriched EZH2 in pull-down studies, and a UNC1999-dye conjugate (UNC2239) for co-localization studies with EZH2 in live cells. Taken together, these compounds represent a set of useful tools for the biomedical community to investigate the role of EZH2 and EZH1 in health and disease.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Complexo Repressor Polycomb 2/antagonistas & inibidores , Administração Oral , Animais , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacocinética , Histonas/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/enzimologia , Masculino , Metilação/efeitos dos fármacos , Camundongos , Complexo Repressor Polycomb 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA