Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Smooth Muscle Res ; 59: 34-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37407438

RESUMO

Garcinia buchananii stem bark extract (GBB), commonly used for treating diarrhea in Africa, triggers ectopic aboral contractions, causing inhibition of propulsive motility in the colon ex vivo. To determine whether or not these effects were associated with decreased inhibitory neuromuscular transmission, the responsible constituent compounds, and mechanisms of action, we studied the effects of GBB and specific fractions and flavanones isolated from GBB on intestinal motility using pellet propulsion assays in guinea pig distal colons. In addition, microelectrode recordings were used to measure the effects on the inhibitory junction potentials (IJPs) in the porcine ileum and descending colon smooth muscle. Psychoactive Drug Screening Program secondary receptor functional assays were used to determine whether or not GBB and its constituent compounds act via purinergic (P2Y) and muscarinic receptors. GBB inhibited propulsive motility, but (2R,3S,2″R,3″R)-manniflavanone (MNF), (2R,3S,2″R,3″R)-GB-2 (GB-2) and (2R,3S,2″S)-buchananiflavanone (BNF), the main ingredients of GBB, did not affect motility. We discovered that, in the porcine descending colon, IJPs contained purinergic, nitrergic, and nonpurinergic nonnitrergic components. Furthermore, ileal IJPs were purely purinergic. GBB blocked all components of IJPs, while MNF and GB-2 inhibited purinergic IJPs only. BNF inhibited the purinergic and nonpurinergic components of IJPs. MRS2365, a Y1 (P2Y) agonist, did not evoke sustained membrane hyperpolarization in the presence of GBB. However, GBB, MNF, GB-2 and BNF did not affect P2Y or muscarinic receptors. In conclusion, inhibitory neuromuscular transmission in the porcine descending colon involves all components of IJPs. GBB decreases inhibitory neuromuscular transmission, likely by the actions of MNF, GB-2 and BNF. These effects do not involve P2Y or muscarinic receptors.


Assuntos
Flavonas , Garcinia , Animais , Cobaias , Casca de Planta , Colo , Flavonas/farmacologia
2.
J Smooth Muscle Res ; 50: 48-65, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26081368

RESUMO

Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions. Calcium (Ca(2+)) imaging was used to analyze the effect of GBB on Ca(2+) flashes and Ca(2+) waves in guinea pig gallbladder and distal colon smooth muscle. Intracellular microelectrode recording was used to determine the effect of GBB, six fractions of GBB, M1-5 and M7, and (2R,3S,2'' R,3''R)-manniflavanone, a compound isolated from M3 on action potentials in gallbladder smooth muscle. The technique was also used to analyze the effect of GBB, M3, and (2R,3S,2'' R,3''R)-manniflavanone on action potentials in the circular muscle of mouse and guinea pig distal colons, and the effect of GBB and (2R,3S,2''R,3'' R)-manniflavanone on slow waves in porcine ileum. GBB inhibited Ca(2+) flashes and Ca(2+) waves. GBB, M3 and (2R,3 S,2''R,3''R)-manniflavanone inhibited action potentials. L-type Ca(2+) channel activator Bay K 8644 increased the discharge of action potentials in mouse colon but did not trigger or increase action potentials in the presence of GBB and (2R,3S,2''R,3'' R)-manniflavanone. GBB and (2R,3S,2'' R,3''R)-manniflavanone inhibited action potentials in the presence of Bay K 8644. GBB and (2R,3 S,2''R,3''R)-manniflavanone reduced the amplitude but did not alter the frequency of slow waves in the porcine ileum. In conclusion, GBB and (2R,3S,2'' R,3''R)-manniflavanone relax smooth muscle by inhibiting L-type Ca(2+) channels, thus have potential for use as therapies of gastrointestinal smooth muscle spasms, and arrhythmias.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Garcinia/química , Trato Gastrointestinal/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Parassimpatolíticos/farmacologia , Extratos Vegetais/farmacologia , Potenciais de Ação , Animais , Cromatografia Líquida , Cobaias , Técnicas In Vitro , Camundongos , Casca de Planta/química , Suínos
3.
Auton Neurosci ; 177(2): 199-210, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23726157

RESUMO

Diabetes and obesity are increasing in prevalence at an alarming rate throughout the world. Autonomic diabetic neuropathy is evident in individuals that experience a long-standing diabetic disease state, and gastrointestinal (GI) dysmotility is thought to be the outcome of neuropathies within the enteric nervous system (ENS) of these patients. To date, an analysis of enteric glial cell population changes during diabetic symptoms has not been performed, and may bring insight into disease pathology and neuropathy, given glial cell implications in gastrointestinal and neuronal homeostasis. Diabetes and obesity were monitored in C57Bl/6J mice fed a 72% high-fat diet, and duodenal glial expression patterns were evaluated by immunohistochemistry and RT-PCR for S100ß, Sox10 and GFAP proteins and transcripts, as well as transmission electron microscopy (TEM). The high-fat diet caused obesity, hyperglycemia and insulin resistance after 4 weeks. These changes were associated with a significant decline in the area density indices of mucosa-associated glial cell networks, evidenced by S100ß staining at 8 and 20 weeks. All three markers and TEM showed that myenteric glial cells were unaffected by early and late disease periods. However, analysis of Sox10 transcript expression and immunoreactivity showed a diet independent, age-associated decline in glial cell populations. This is the first study showing that mucosal glia cell damage occurs during diabetic symptoms, suggesting that mucosal enteric glia injury may have a pathophysiological significance during this disease. Our results also provide support for age-associated changes in longitudinal studies of enteric glial cells.


Assuntos
Envelhecimento/patologia , Dieta Hiperlipídica/efeitos adversos , Sistema Nervoso Entérico/patologia , Intestino Delgado/patologia , Neuroglia/patologia , Envelhecimento/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Sistema Nervoso Entérico/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Obesidade/metabolismo , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA