RESUMO
The mechanisms for chaos terrain formation on Europa have long been a source of debate in the scientific community. There exist numerous theoretical and numerical models for chaos formation, but to date there has been a lack of quantifiable observations that can be used to constrain models and permit comparison to the outputs of these chaos models. Here, we use mapping and statistical analysis to develop a quantitative description of chaos terrain and their observed morphologies. For nine chaos features, we map every block, or region of pre-existing terrain within disrupted matrix. We demonstrate that chaos terrains follow a continuous spectrum of morphologies between two endmembers, platy and knobby. We find that any given chaos terrain's morphology can be quantified by means of the linearized exponential slope of its cumulative block area distribution. This quantitative metric provides a new diagnostic parameter in future studies of chaos terrain formation and comparison.