Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 8(4): e09283, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35497041

RESUMO

In this work, the excision of hexavalent chromium (Cr(VI)) was studied from an aqueous solution using the chemically modified arecanut leaf sheath (CALS) as a novel bio-adsorbent. The as-prepared adsorbent was characterized by using instrumental methods including Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The effect of several factors, including solution pH, contact time, and sorbent dosages were examined to identify the optimum condition for the sorption ability. The optimal pH of Cr(VI) biosorption was 2.0, and equilibrium was reached in 150 min. Adsorption was shown to be pseudo-second-order in kinetic investigations, and the Langmuir isotherm with maximal adsorption efficiency was determined as 109.89 mg/g. The spent biosorbent can be easily regenerated and reused. For the biosorption of oxyanions of chromium, both electrostatic attraction and ligand exchange mechanism play critical roles. From the results, the CALS appears to be a potential low-cost effective sorbent to remove Cr (VI) from water.

2.
ACS Appl Mater Interfaces ; 14(12): 14492-14503, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302340

RESUMO

Metallic (1T) molybdenum disulfide (MoS2) is a much better electrocatalyst than the semiconducting (2H) MoS2 because of its superior conductivity, presence of active basal planes, and bulky interlayers. However, the lack of thermodynamic stability has hindered its practical uses. The insertion of transition metals and nonmetals in the interlayers and the crystal is known to improve both the thermodynamic stability and the catalytic efficacy of 1T-MoS2. In this study, for the first time we have developed an electrocatalyst for water splitting based on metallic copper molybdenum sulfide (1T-CMS). The present catalyst, P-doped and intercalated 1T-CMS ultrathin 2D nanosheets on carbon cloth (P-1T-CMS@CC), demonstrates excellent catalytic efficacy for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). It required an overpotential of 95 mV for HER and of 284 mV for OER at a current density of 10 mA cm-2. The P-1T-CMS@CC(+ -) device also shows excellent performance, requiring a cell voltage of only 1.51 V at a current density of 10 mA cm-2.

3.
Small ; 16(23): e2001691, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32374526

RESUMO

Fabrication of hierarchical nanosheet arrays of 1T phase of transition-metal dichalcogenides is indeed a critical task, but it holds immense potential for energy storage. A single-step strategy is employed for the fabrication of stable 1T-Mnx Mo1- x S2- y Sey and MoFe2 S4- z Sez hierarchical nanosheet arrays on carbon cloth as positive and negative electrodes, respectively. The flexible asymmetric supercapacitor constructed with these two electrodes exhibits an excellent electrochemical performance (energy density of ≈69 Wh kg-1  at a power density of 0.985 kW kg-1 ) with ultralong cyclic stability of ≈83.5% capacity retention, after 10 000 consecutive cycles. Co-doping of the metal and nonmetal boosts the charge storage ability of the transition-metal chalcogenides following enrichment in the metallic 1T phase, improvement in the surface area, and expansion in the interlayer spacing in tandem, which is the key focus of the present study. This study explicitly demonstrates the exponential enhancement of specific capacity of MoS2 following intercalation and doping of Mn and Se, and Fe2 S3 following doping of Mo and Se could be an ideal direction for the fabrication of novel energy-storage materials with high-energy storage ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA