Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 91(6): 1348-55, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26494428

RESUMO

Synthesis, photophysical and metal ion recognition properties of a series of amino acid-linked free-base and Zn-porphyrin derivatives (5-9) are reported. These porphyrin derivatives showed favorable photophysical properties including high molar extinction coefficients (>1 × 10(5) m(-1) cm(-1) for the Soret band), quantum yields of triplet excited states (63-94%) and singlet oxygen generation efficiencies (59-91%). Particularly, the Zn-porphyrin derivatives, 6 and 9 showed higher molar extinction coefficients, decreased fluorescence quantum yields, and higher triplet and singlet oxygen quantum yields compared to the corresponding free-base porphyrin derivatives. Further, the study of their interactions with various metal ions indicated that the proline-conjugated Zn-porphyrins (6 and 9) showed high selectivity toward Cu(2+) ions and signaled the recognition through changes in fluorescence intensity. Our results provide insights on the role of nature of amino acid and metallation in the design of the porphyrin systems for application as probes and sensitizers.

2.
Photochem Photobiol ; 90(3): 628-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24164211

RESUMO

The Gram-negative Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum are major causative agents of aggressive periodontal disease. Due to increase in the number of antibiotic-resistant bacteria, antimicrobial Photodynamic therapy (aPDT) seems to be a plausible alternative. In this work, photosensitization was performed on Gram-positive and Gram-negative bacteria in pure culture using new-age cationic porphyrins, namely mesoimidazolium-substituted porphyrin derivative (ImP) and pyridinium-substituted porphyrin derivative (PyP). The photophysical properties of both the sensitizers including absorption, fluorescence emission, quantum yields of the triplet excited states and singlet oxygen generation efficiencies were evaluated in the context of aPDT application. The studied porphyrins exhibited high ability to accumulate into bacterial cells with complete penetration into early stage biofilms. As compared with ImP, PyP was found to be more effective for photoinactivation of bacterial strains associated with periodontitis, without any signs of dark toxicity, owing to its high photocytotoxicity.


Assuntos
Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Periodonto/microbiologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Cátions , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
ACS Chem Biol ; 8(1): 127-32, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23092119

RESUMO

We synthesized a novel water-soluble porphyrin THPP and its metalated derivative Zn-THPP having excellent triplet excited state quantum yields and singlet oxygen generation efficiency. When compared to U.S. Food and Drug Administration approved and clinically used sensitizer Photofrin, THPP showed ca. 2-3-fold higher in vitro photodynamic activity in different cell lines under identical conditions. The mechanism of the biological activity of these porphyrin systems has been evaluated through a variety of techniques: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, comet assay, poly(ADP-ribose)polymerase (PARP) cleavage, CM-H(2)DCFDA assay, DNA fragmentation, flow cytometric analysis, fluorescence, and confocal microscopy, which confirm the apoptotic cell death through predominantly reactive oxygen species (ROS). Moreover, THPP showed rapid cellular uptake and are localized in the nucleus of the cells as compared to Hoechst dye and Photofrin, thereby demonstrating its use as an efficient sensitizer in photodynamic therapy and live cell NIR nucleus imaging applications.


Assuntos
Complexos de Coordenação/síntese química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química , Zinco/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Humanos , Microscopia Confocal , Estrutura Molecular , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA