Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Med Devices (Auckl) ; 17: 73-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404631

RESUMO

Subarachnoid haemorrhage (SAH) can trigger a range of poorly understood cerebrovascular responses that may play a role in delayed cerebral ischemia. The brain pulse monitor is a novel non-invasive device that detects a brain photoplethysmography signal that provides information on intracranial pressure (ICP), compliance, blood flow and tissue oxygen saturation. We monitored the cerebrovascular responses in a patient with Lundberg B waves following a SAH. The patient presented with a Fischer grade 4 SAH that required urgent left posterior communicating artery aneurysm coiling and ventricular drain insertion. On hospital day 4 oscillations or spikes on the invasive ICP were noted, consistent with Lundberg B waves. Brain pulse monitoring demonstrated concurrent pulse waveform features consistent with reduced brain compliance and raised ICP over both brain hemispheres. Oxygen levels also demonstrated slow oscillations correlated with the ICP spikes. Brief infrequent episodes of reduced and absent brain pulses were also noted over the right hemisphere. Our findings suggest that the brain pulse monitor holds promise for early detection of delayed cerebral ischemia and could offer insights into the vascular mechanisms at play.

2.
Curr Org Synth ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37641991

RESUMO

BACKGROUND: Cheminformatics is a fascinating emerging subfield of chemical graph theory that studies quantitative structure-activity and property relationships of molecules and, in turn, uses these to predict the physical and chemical properties, which are extremely useful in drug discovery and optimization. Knowledge discovery can be put to use in pharmaceutical data matching to help in finding promising lead compounds. METHOD: Topological descriptors are numerical quantities corresponding to the chemical structures that are used in the study of these phenomena. RESULT: This paper is concerned with developing the generalized analytical expression of topological descriptors for zeolite ACO structures with underlying degree and degree-sum parameters. CONCLUSION: To demonstrate improved discrimination power between the topological descriptors, we have further modified Shannon's entropy approach and used it to calculate the entropy measures of zeolite ACO structures.

3.
Glycobiology ; 33(10): 817-836, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37555669

RESUMO

A large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) initiate mucin type O-glycosylation transferring α-GalNAc from a UDP-GalNAc donor to the hydroxyl groups of Ser and Thr residues of peptides and proteins, thereby defining sites of O-glycosylation. Mutations and differential expression of several GalNAc-Ts are associated with many disease states including cancers. The mechanisms by which these isozymes choose their targets and their roles in disease are not fully understood. We previously showed that the GalNAc-Ts possess common and unique specificities for acceptor type, peptide sequence and prior neighboring, and/or remote substrate GalNAc glycosylation. In the present study, the role of flanking charged residues was investigated using a library of charged peptide substrates containing the central -YAVTPGP- acceptor sequence. Eleven human and one bird GalNAc-T were initially characterized revealing a range of preferences for net positive, net negative, or unique combinations of flanking N- and/or C-terminal charge, correlating to each isozyme's different electrostatic surface potential. It was further found that isoforms with high sequence identity (>70%) within a subfamily can possess vastly different charge specificities. Enzyme kinetics, activities obtained at elevated ionic strength, and molecular dynamics simulations confirm that the GalNAc-Ts differently recognize substrate charge outside the common +/-3 residue binding site. These electrostatic interactions impact how charged peptide substrates bind/orient on the transferase surface, thus modulating their activities. In summary, we show the GalNAc-Ts utilize more extended surfaces than initially thought for binding substrates based on electrostatic, and likely other hydrophobic/hydrophilic interactions, furthering our understanding of how these transferases select their target.


Assuntos
Mucinas , N-Acetilgalactosaminiltransferases , Humanos , Glicosilação , Mucinas/metabolismo , Isoenzimas/química , Peptídeos/química , N-Acetilgalactosaminiltransferases/metabolismo , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
4.
Sci Rep ; 13(1): 10874, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407626

RESUMO

Entropy of a connected network is a quantitative measure from information theory that has triggered a plethora of research domains in molecular chemistry, biological sciences and computer programming due to its inherent capacity to explore the structural characteristics of complex molecular frameworks that have low structural symmetry as well as high diversity. The analysis of the structural order is greatly simplified through the topological indices based graph entropy metrics, which are then utilized to predict the structural features of molecular frameworks. This predictability has not only revolutionized the study of zeolitic frameworks but has also given rise to new generations of frameworks. We make a comparative study of two versatile framework topologies namely zeolites BCT and DFT, which have been widely utilized to create a new generation of frameworks known as metal organic frameworks. We discuss bond-additive topological indices and compute entropy measure descriptors for zeolites BCT and DFT using degree and degree-sum parameters. In addition, we perform bond-wise scaled comparative analysis between BCT and DFT which shows that zeolite BCT has greater entropy values compared to zeolite DFT.

5.
J Chem Phys ; 158(14): 144305, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37061488

RESUMO

While the dissociative recombination (DR) of ground-state molecular ions with low-energy free electrons is generally known to be exothermic, it has been predicted to be endothermic for a class of transition-metal oxide ions. To understand this unusual case, the electron recombination of titanium oxide ions (TiO+) with electrons has been experimentally investigated using the Cryogenic Storage Ring. In its low radiation field, the TiO+ ions relax internally to low rotational excitation (≲100 K). Under controlled collision energies down to ∼2 meV within the merged electron and ion beam configuration, fragment imaging has been applied to determine the kinetic energy released to Ti and O neutral reaction products. Detailed analysis of the fragment imaging data considering the reactant and product excitation channels reveals an endothermicity for the TiO+ dissociative electron recombination of (+4 ± 10) meV. This result improves the accuracy of the energy balance by a factor of 7 compared to that found indirectly from hitherto known molecular properties. Conversely, the present endothermicity yields improved dissociation energy values for D0(TiO) = (6.824 ± 0.010) eV and D0(TiO+) = (6.832 ± 0.010) eV. All thermochemistry values were compared to new coupled-cluster calculations and found to be in good agreement. Moreover, absolute rate coefficients for the electron recombination of rotationally relaxed ions have been measured, yielding an upper limit of 1 × 10-7 cm3 s-1 for typical conditions of cold astrophysical media. Strong variation of the DR rate with the TiO+ internal excitation is predicted. Furthermore, potential energy curves for TiO+ and TiO have been calculated using a multi-reference configuration interaction method to constrain quantum-dynamical paths driving the observed TiO+ electron recombination.

6.
J Med Genet ; 60(7): 627-635, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36357165

RESUMO

BACKGROUND: Enzymes of the Golgi implicated in N-glycan processing are critical for brain development, and defects in many are defined as congenital disorders of glycosylation (CDG). Involvement of the Golgi mannosidase, MAN2A2 has not been identified previously as causing glycosylation defects. METHODS: Exome sequencing of affected individuals was performed with Sanger sequencing of the MAN2A2 transcript to confirm the variant. N-glycans were analysed in patient-derived lymphoblasts to determine the functional effects of the variant. A cell-based complementation assay was designed to assess the pathogenicity of identified variants using MAN2A1/MAN2A2 double knock out HEK293 cell lines. RESULTS: We identified a multiplex consanguineous family with a homozygous truncating variant p.Val1101Ter in MAN2A2. Lymphoblasts from two affected brothers carrying the same truncating variant showed decreases in complex N-glycans and accumulation of hybrid N-glycans. On testing of this variant in the developed complementation assay, we see the complete lack of complex N-glycans. CONCLUSION: Our findings show that pathogenic variants in MAN2A2 cause a novel autosomal recessive CDG with neurological involvement and facial dysmorphism. Here, we also present the development of a cell-based complementation assay to assess the pathogenicity of MAN2A2 variants, which can also be extended to MAN2A1 variants for future diagnosis.


Assuntos
Defeitos Congênitos da Glicosilação , Masculino , Humanos , Glicosilação , Células HEK293 , Homozigoto , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Polissacarídeos/metabolismo , Manosidases/metabolismo
7.
Front Mol Biosci ; 10: 1295507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38628442

RESUMO

MicroRNAs (miRNAs) are short non-coding RNAs that play crucial roles in gene regulation, exerting post-transcriptional silencing, thereby influencing cellular function, development, and disease. Traditional loss-of-function methods for studying miRNA functions, such as miRNA inhibitors and sponges, present limitations in terms of specificity, transient effects, and off-target effects. Similarly, CRISPR/Cas9-based editing of miRNAs using single guide RNAs (sgRNAs) also has limitations in terms of design space for generating effective gRNAs. In this study, we introduce a novel approach that utilizes CRISPR/Cas9 with dual guide RNAs (dgRNAs) for the rapid and efficient generation of short deletions within miRNA genomic regions. Through the expression of dgRNAs through single-copy lentiviral integration, this approach achieves over a 90% downregulation of targeted miRNAs within a week. We conducted a comprehensive analysis of various parameters influencing efficient deletion formation. In addition, we employed doxycycline (Dox)-inducible expression of Cas9 from the AAVS1 locus, enabling homogeneous, temporal, and stage-specific editing during cellular differentiation. Compared to miRNA inhibitory methods, the dgRNA-based approach offers higher specificity, allowing for the deletion of individual miRNAs with similar seed sequences, without affecting other miRNAs. Due to the increased design space, the dgRNA-based approach provides greater flexibility in gRNA design compared to the sgRNA-based approach. We successfully applied this approach in two human cell lines, demonstrating its applicability for studying the mechanisms of human erythropoiesis and pluripotent stem cell (iPSC) biology and differentiation. Efficient deletion of miR-451 and miR-144 resulted in blockage of erythroid differentiation, and the deletion of miR-23a and miR-27a significantly affected iPSC survival. We have validated the highly efficient deletion of genomic regions by editing protein-coding genes, resulting in a significant impact on protein expression. This protocol has the potential to be extended to delete multiple miRNAs within miRNA clusters, allowing for future investigations into the cooperative effects of the cluster members on cellular functions. The protocol utilizing dgRNAs for miRNA deletion can be employed to generate efficient pooled libraries for high-throughput comprehensive analysis of miRNAs involved in different biological processes.

8.
Front Cell Dev Biol ; 10: 979096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393834

RESUMO

Saul-Wilson syndrome is a rare skeletal dysplasia caused by a heterozygous mutation in COG4 (p.G516R). Our previous study showed that this mutation affected glycosylation of proteoglycans and disturbed chondrocyte elongation and intercalation in zebrafish embryos expressing the COG4p.G516R variant. How this mutation causes chondrocyte deficiencies remain unsolved. To analyze a disease-relevant cell type, COG4p.G516R variant was generated by CRISPR knock-in technique in the chondrosarcoma cell line SW1353 to study chondrocyte differentiation and protein secretion. COG4p.G516R cells display impaired protein trafficking and altered COG complex size, similar to SWS-derived fibroblasts. Both SW1353 and HEK293T cells carrying COG4p.G516R showed very modest, cell-type dependent changes in N-glycans. Using 3D culture methods, we found that cells carrying the COG4p.G516R variant made smaller spheroids and had increased apoptosis, indicating impaired in vitro chondrogenesis. Adding WT cells or their conditioned medium reduced cell death and increased spheroid sizes of COG4p.G516R mutant cells, suggesting a deficiency in secreted matrix components. Mass spectrometry-based secretome analysis showed selectively impaired protein secretion, including MMP13 and IGFBP7 which are involved in chondrogenesis and osteogenesis. We verified reduced expression of chondrogenic differentiation markers, MMP13 and COL10A1 and delayed response to BMP2 in COG4p.G516R mutant cells. Collectively, our results show that the Saul-Wilson syndrome COG4p.G516R variant selectively affects the secretion of multiple proteins, especially in chondrocyte-like cells which could further cause pleiotropic defects including hampering long bone growth in SWS individuals.

9.
Anaesth Intensive Care ; 50(5): 345-360, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076353

RESUMO

Amyotrophic lateral sclerosis, or motor neuron disease, is an uncommon progressive neurological disorder. Professionals working in the perioperative field may encounter patients with amyotrophic lateral sclerosis only rarely. The relevant published literature on amyotrophic lateral sclerosis is broad in scope, but a contemporary review focused on the perioperative period is absent. This structured narrative review seeks to provide a summary of the contemporary management of patients and then focuses on eliciting if there are perioperative management considerations specific to amyotrophic lateral sclerosis that can be optimised. A comprehensive structured narrative literature review, including grey literature searching, indicated worsening ventilatory failure is of prime concern but that patients may present with a broad range of neurological symptoms, and that cardiovascular and cognitive dysfunction specific to amyotrophic lateral sclerosis may exist and be occult. Exacerbation of neuromuscular weakness during the perioperative period is multifaceted and requires the application of a high standard of the core principles of surgical and anaesthetic management of neuromuscular disease. Standard perioperative approaches require rigorous attention and potential exists for significant alteration. There is a potential high risk of postoperative increased morbidity from neurological decline and mortality from pulmonary complications. A meticulous approach to planning preoperative assessment, shared decision-making, intraoperative and postoperative care is required.


Assuntos
Esclerose Lateral Amiotrófica , Assistência Perioperatória , Esclerose Lateral Amiotrófica/cirurgia , Humanos
10.
BMJ Open Qual ; 11(3)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35906009

RESUMO

Reliable provision of emergency equipment in Critical Care is key to ensure patient safety during medical emergencies and transfers. A problem was identified in incident reports and external inspections of processes that ensured the provision of such equipment for use by critical care teams in non-critical care areas in the form of grab bags. A comprehensive project was undertaken to tackle this including the provision of a bespoke digital system.Existing systems were reliant on staff remembering to check equipment and document checks on paper and there was no formal ability to hand over ongoing problems. A local project management approach, '7 Steps to Quality Improvement', which integrated many of the philosophies and tools from Healthcare Improvement was used. A bespoke digital system was designed and implemented with integrated improvements in equipment stocking ergonomics.The reliability of documented equipment checks improved significantly, there was a significant reduction in the number of incident reports regarding emergency equipment and the time spent by staff doing equipment checks was reduced substantially with significant cost and resource improvements. This was so successful the format has been rapidly translated and spread to other areas such as operating theatres' difficult airway trolleys.Undertaking a structured quality improvement approach, using appropriate stakeholder engagement, digitalisation of systems and improvements in basic system ergonomics can have a substantial impact on the reliability and safety of emergency equipment provided for use by members of the critical care team.


Assuntos
Segurança do Paciente , Melhoria de Qualidade , Atenção à Saúde , Humanos , Reprodutibilidade dos Testes , Gestão de Riscos
11.
Phys Rev Lett ; 128(18): 183402, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35594107

RESUMO

We present state-selected measurements of rotational cooling and excitation rates of CH^{+} molecular ions by inelastic electron collisions. The experiments are carried out at a cryogenic storage ring, making use of a monoenergetic electron beam at matched velocity in combination with state-sensitive laser dissociation of the CH^{+} ions for simultaneous monitoring of the rotational level populations. Employing storage times of up to 600 s, we create conditions where electron-induced cooling to the J=0 ground state dominates over radiative relaxation, allowing for the experimental determination of inelastic electron collision rates to benchmark state-of-the-art theoretical calculations. On a broader scale, our experiments pave the way to probe inelastic electron collisions for a variety of molecular ions relevant in various plasma environments.

12.
Indian J Psychiatry ; 63(2): 171-174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194061

RESUMO

The National Mental Health Survey of India reported a higher prevalence and treatment gap of psychiatric disorders among the general population. Task shifting is one of the important solutions to meet this requirement. The prevalence of psychiatric disorders among primary care is about 30%-50%. Digitally driven primary care psychiatry program (PCPP) designed to innovate different module to upscale the skills of primary care doctors (PCDs) in live consultation of PCDs in their general patients. To exponential coverage of PCDs, Karnataka Telemedicine Mentoring and Monitoring (KTM) Program is been implemented across all districts of Karnataka. It is the training of trainer version of PCPP where psychiatrists serving in District Mental Health Program of all districts of Karnataka become trainers to implement of two digital modules (Telepsychiatric On-Consultation Training and Collaborative Video Consultations) of PCPP with the target to train all PCDs of Karnataka. This paper aims to provide a glimpse of this innovative KTM program and current progress with a preliminary analysis of translational quotient indicating skill transfer and retention.

13.
Chem Sci ; 12(15): 5611-5615, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163775

RESUMO

We report a method for the enantioselective hydrogenation of annulated arenes using 4H-pyrido[1,2-a]pyrimidinones as substrates. The method selectively generates multiple stereocenters in adjacent rings leading to architecturally complex motifs, which resemble bioactive molecules. The mechanistic study of the stereochemical outcome revealed that the catalyst is able to overcome substrate stereocontrol providing all-cis-substituted products predominantly. In a sequential protocol, a matching interaction between catalyst and substrate stereocontrol is achieved that facilitates diastereo- and enantioselective access to trans-products.

14.
EJHaem ; 1(1): 219-229, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32885223

RESUMO

Early complications post hematopoietic stem cell transplantation (HSCT) such as sinusoidal obstruction syndrome (SOS) and graft versus host disease (GVHD) can be life threatening. Although several biomarkers have been identified to correlate with these complications and their response to treatment, these are yet to be used in clinical practice. Here, we evaluated circulating endothelial cells (CECs) (n = 26) and plasma biomarkers (ST2, REG3α, VCAM1, ICAM1, TIM3) (N = 210) at early time points, to determine their association with early complications post-HSCT. Elevated CEC counts at the end of conditioning was associated with GVHD, indicating endothelial damage during HSCT. Plasma levels of REG3α, VCAM1, ICAM1, and TIM3 on day 14 (D14) and D14 ICAM1 and D28 ST2 were significantly higher in patients with SOS and aGVHD, respectively. Upon sub-group analysis, D28 ST2, D14/D28 REG3α, and D14ICAM1 levels were significantly higher in patients with gastrointestinal GVHD, while D28ST2 was higher in those with skin/liver GVHD. High ST2 levels on D28 was significantly associated with non-relapse mortality (NRM) and overall survival. Our results suggest that elevated ST2 levels on D28 could predict the likelihood of developing aGVHD and could influence NRM and OS.

15.
J Biol Chem ; 295(35): 12525-12536, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669364

RESUMO

Mucin-type O-glycosylation is an essential post-translational modification required for protein secretion, extracellular matrix formation, and organ growth. O-Glycosylation is initiated by a large family of enzymes (GALNTs in mammals and PGANTs in Drosophila) that catalyze the addition of GalNAc onto the hydroxyl groups of serines or threonines in protein substrates. These enzymes contain two functional domains: a catalytic domain and a C-terminal ricin-like lectin domain comprised of three potential GalNAc recognition repeats termed α, ß, and γ. The catalytic domain is responsible for binding donor and acceptor substrates and catalyzing transfer of GalNAc, whereas the lectin domain recognizes more distant extant GalNAc on previously glycosylated substrates. We previously demonstrated a novel role for the α repeat of lectin domain in influencing charged peptide preferences. Here, we further interrogate how the differentially spliced α repeat of the PGANT9A and PGANT9B O-glycosyltransferases confers distinct preferences for a variety of endogenous substrates. Through biochemical analyses and in silico modeling using preferred substrates, we find that a combination of charged residues within the α repeat and charged residues in the flexible gating loop of the catalytic domain distinctively influence the peptide substrate preferences of each splice variant. Moreover, PGANT9A and PGANT9B also display unique glycopeptide preferences. These data illustrate how changes within the noncatalytic lectin domain can alter the recognition of both peptide and glycopeptide substrates. Overall, our results elucidate a novel mechanism for modulating substrate preferences of O-glycosyltransferases via alternative splicing within specific subregions of functional domains.


Assuntos
Simulação por Computador , Proteínas de Drosophila/química , Glicopeptídeos/química , Glicosiltransferases/química , Processamento Alternativo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Glicopeptídeos/genética , Glicosilação , Glicosiltransferases/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Especificidade por Substrato
16.
Sci Total Environ ; 712: 136449, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050376

RESUMO

Land use/land cover (LULC) changes strongly affect catchment hydrology and sediment yields. The current study aims at analyzing the hydrological consequences of dynamic LULC changes in the Anzali wetland catchment, Iran. The Soil and Water Assessment Tool (SWAT 2012) model was used to assess impacts on evapotranspiration, water yield, and sediment yield. Two model runs were performed using static and dynamic LULC inputs to evaluate the effects of LULC change between 1990 and 2013. For the static model, the LULC map of 1990 was used, whereas for the dynamic model, a gradual change of the LULC distribution was interpolated from 1990, 2000, and 2013 LULC data. The major LULC changes were identified as an increase of agricultural area by 7% of the catchment area and a decrease of forest coverage by 6.8% between 1990 and 2013. At the catchment scale, the differences in the long-term mean annual values for the main water balance components and sediment yield were smaller than 10 mm (<2.8%) and 3 t/km2 (<2.6%), respectively. However, at the sub-basin scale the increase of agricultural land use resulted in an increase of evapotranspiration, water yield, and sediment yield by up to 8.3%, 7%, and 169%, respectively, whereas urban expansion led to a decrease of evapotranspiration, water yield, and sediment yield by up to -3.5%, -2.3%, and -9.4%. According to the results of the monthly time scale analysis, the most significant impact of LULC changes occurs during the dry season months, when the increase of irrigation agriculture results in an increase in water discharge and sediment loads to the Anzali wetland. Overall, the results showed that the implementation of dynamic LULC change into the SWAT model could be adopted as a planning tool to manage LULC change of the Anzali wetland catchment in the future.

17.
Nat Chem Biol ; 16(3): 351-360, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932717

RESUMO

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.


Assuntos
Fatores de Crescimento de Fibroblastos/química , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Células CHO , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos , Isoenzimas/metabolismo , Lectinas/metabolismo , N-Acetilgalactosaminiltransferases/fisiologia , Treonina/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
18.
Oxf Med Case Reports ; 2019(10): omz109, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31798922

RESUMO

The following report details the multidisciplinary treatment of a patient with motor neurone disease. The patient, who requested publication of this case, is a highly intelligent and distinguished robotic scientist. He was diagnosed with amyotrophic lateral sclerosis in 2017 and his personal approach to his condition has been to use modern technology and all treatment options to maximise his quality and duration of life. After his research, the patient decided that his life would be significantly improved by formation of an elective 'triple-ostomy', this being an end colostomy and suprapubic catheter (for continence), and a percutaneous gastrostomy (for nutrition). We report the peri-operative multidisciplinary approach taken with this case, the surgical procedures, the potential risks and the outcome. The patient is delighted with the result and aims to raise awareness that this may be a treatment option in highly selected patients.

19.
BMC Health Serv Res ; 19(1): 683, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585540

RESUMO

BACKGROUND: The Plan-Do-Study-Act (PDSA) method is widely used in quality improvement (QI) strategies. However, previous studies have indicated that methodological problems are frequent in PDSA-based QI projects. Furthermore, it has been difficult to establish an association between the use of PDSA and improvements in clinical practices and patient outcomes. The aim of this systematic review was to examine whether recently published PDSA-based QI projects show self-reported effects and are conducted according to key features of the method. METHODS: A systematic literature search was performed in the PubMed, Embase and CINAHL databases. QI projects using PDSA published in peer-reviewed journals in 2015 and 2016 were included. Projects were assessed to determine the reported effects and the use of the following key methodological features; iterative cyclic method, continuous data collection, small-scale testing and use of a theoretical rationale. RESULTS: Of the 120 QI projects included, almost all reported improvement (98%). However, only 32 (27%) described a specific, quantitative aim and reached it. A total of 72 projects (60%) documented PDSA cycles sufficiently for inclusion in a full analysis of key features. Of these only three (4%) adhered to all four key methodological features. CONCLUSION: Even though a majority of the QI projects reported improvements, the widespread challenges with low adherence to key methodological features in the individual projects pose a challenge for the legitimacy of PDSA-based QI. This review indicates that there is a continued need for improvement in quality improvement methodology.


Assuntos
Atenção à Saúde/normas , Melhoria de Qualidade/normas , Projetos de Pesquisa/normas , Humanos
20.
Pharmgenomics Pers Med ; 12: 167-179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447578

RESUMO

Therapeutic options for acute myeloid leukemia (AML) have remained unchanged for nearly the past 5 decades, with cytarabine and anthracyclines and use of hypomethylating agents for less intensive therapy. Implementation of large-scale genomic studies in the past decade has unraveled the genetic landscape and molecular etiology of AML. The approval of several novel drugs for targeted therapy, including midostaurin, enasidenib, ivosidenib, gemtuzumab-ozogamicin, and CPX351 by the US Food and Drug Administration has widened the treatment options for clinicians treating AML. This review focuses on some of these novel therapies and other promising agents under development, along with key clinical trial findings in AML.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA