Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1411151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903601

RESUMO

Background and objectives: Amplitude-integrated EEG (aEEG) is used to assess electrocortical activity in pediatric intensive care if (continuous) full channel EEG is unavailable but evidence regarding the meaning of suppressed aEEG amplitudes in children remains limited. This retrospective cohort study investigated the association of suppressed aEEG amplitudes in critically ill children with death or decline of neurological functioning at hospital discharge. Methods: Two hundred and thirty-five EEGs derived from individual patients <18 years in the pediatric intensive care unit at the University Hospital Essen (Germany) between 04/2014 and 07/2021, were converted into aEEGs and amplitudes analyzed with respect to age-specific percentiles. Crude and adjusted odds ratios (OR) for death, and functional decline at hospital discharge in patients with bilateral suppression of the upper or lower amplitude below the 10th percentile were calculated. Sensitivity, specificity, positive (PPV) and negative predictive values (NPV) were assessed. Results: The median time from neurological insult to EEG recording was 2 days. PICU admission occurred due to neurological reasons in 43% and patients had high overall disease severity. Thirty-three (14%) patients died and 68 (29%) had a functional decline. Amplitude suppression was observed in 48% (upper amplitude) and 57% (lower amplitude), with unilateral suppression less frequent than bilateral suppression. Multivariable regression analyses yielded crude ORs between 4.61 and 14.29 and adjusted ORs between 2.55 and 8.87 for death and functional decline if upper or lower amplitudes were bilaterally suppressed. NPVs for bilaterally non-suppressed amplitudes were above 95% for death and above 83% for pediatric cerebral performance category Scale (PCPC) decline, whereas PPVs ranged between 22 and 32% for death and 49-52% for PCPC decline. Discussion: This study found a high prevalence of suppressed aEEG amplitudes in critically ill children. Bilaterally normal amplitudes predicted good outcomes, whereas bilateral suppression was associated with increased odds for death and functional decline. aEEG assessment may serve as an element for risk stratification of PICU patients if conventional EEG is unavailable with excellent negative predictive abilities but requires additional information to identify patients at risk for poor outcomes.

2.
Front Immunol ; 14: 1096019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776874

RESUMO

B cell maturation and immunoglobulin (Ig) repertoire selection are governed by expression of a functional B cell receptor (BCR). Naïve B cells co-express their BCR as IgM and IgD isotype. However, the role of the additionally expressed IgD on naïve B cells is not known. Here we assessed the impact of IgD on naïve B cell maturation and Ig repertoire selection in 8 individuals from 3 different families with heterozygous loss-of-function or loss-of expression mutations in IGHD. Although naïve B cells from these individuals expressed IgM on their surface, the IGHD variant in heterozygous state entailed a chimeric situation by allelic exclusion with almost half of the naïve B cell population lacking surface IgD expression. Flow cytometric analyses revealed a distinct phenotype of IgD-negative naïve B cells with decreased expression of CD19, CD20 and CD21 as well as lower BAFF-R and integrin-ß7 expression. IgD-negative B cells were less responsive in vitro after engaging the IgM-BCR, TLR7/9 or CD40 pathway. Additionally, a selective disadvantage of IgD-negative B cells within the T2 transitional and mature naïve B cell compartment as well as reduced frequencies of IgMlo/- B cells within the mature naïve B cell compartment lacking IgD were evident. RNA-Ig-seq of bulk sorted B cell populations showed an altered selection of distinct VH segments in the IgD-negative mature naïve B cell population. We conclude that IgD expression on human naïve B cells is redundant for generation of naïve B cells in general, but further shapes the naive B cell compartment starting from T2 transitional B cells. Our observations suggest an unexpected role of IgD expression to be critical for selection of distinct Ig VH segments into the pre-immune Ig repertoire and for the survival of IgMlo/- naïve B cells known to be enriched in poly-/autoreactive B cell clones.


Assuntos
Linfócitos B , Imunoglobulina D , Humanos , Imunoglobulina D/metabolismo , Imunoglobulina M , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Isotipos de Imunoglobulinas/metabolismo
3.
Orphanet J Rare Dis ; 15(1): 242, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907597

RESUMO

BACKGROUND: Walker-Warburg syndrome (WWS) is a rare form of alpha-dystroglycanopathy characterized by muscular dystrophy and severe malformations of the CNS and eyes. Bi-allelic pathogenic variants in POMK are the cause of a broad spectrum of alpha-dystroglycanopathies. POMK encodes protein-O-mannose kinase, which is required for proper glycosylation and function of the dystroglycan complex and is crucial for extracellular matrix composition. RESULTS: Here, we report on male monozygotic twins with severe CNS malformations (hydrocephalus, cortical malformation, hypoplastic cerebellum, and most prominently occipital meningocele), eye malformations and highly elevated creatine kinase, indicating the clinical diagnosis of a congenital muscular dystrophy (alpha-dystroglycanopathy). Both twins were found to harbor a homozygous nonsense mutation c.640C>T, p.214* in POMK, confirming the clinical diagnosis and supporting the concept that POMK mutations can be causative of WWS. CONCLUSION: Our combined data suggest a more important role for POMK in the pathogenesis of meningoencephalocele. Only eight different pathogenic POMK variants have been published so far, detected in eight families; only five showed the severe WWS phenotype, suggesting that POMK-associated WWS is an extremely rare disease. We expand the phenotypic and mutational spectrum of POMK-associated WWS and provide evidence of the broad phenotypic variability of POMK-associated disease.


Assuntos
Meningocele , Distrofias Musculares , Malformações do Sistema Nervoso , Proteínas Quinases/genética , Síndrome de Walker-Warburg , Homozigoto , Humanos , Masculino , Mutação , Gêmeos Monozigóticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA