Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012445

RESUMO

In the cells of higher eukaryotes, sophisticated mechanisms have evolved to repair DNA double-strand breaks (DSBs). Classical nonhomologous end joining (c-NHEJ), homologous recombination (HR), alternative end joining (alt-EJ) and single-strand annealing (SSA) exploit distinct principles to repair DSBs throughout the cell cycle, resulting in repair outcomes of different fidelity. In addition to their functions in DSB repair, the same repair pathways determine how cells integrate foreign DNA or rearrange their genetic information. As a consequence, random integration of DNA fragments is dominant in somatic cells of higher eukaryotes and suppresses integration events at homologous genomic locations, leading to very low gene-targeting efficiencies. However, this response is not universal, and embryonic stem cells display increased targeting efficiency. Additionally, lymphoblastic chicken and human cell lines DT40 and NALM6 show up to a 1000-fold increased gene-targeting efficiency that is successfully harnessed to generate knockouts for a large number of genes. We inquired whether the increased gene-targeting efficiency of DT40 and NALM6 cells is linked to increased rates of HR-mediated DSB repair after exposure to ionizing radiation (IR). We analyzed IR-induced γ-H2AX foci as a marker for the total number of DSBs induced in a cell and RAD51 foci as a marker for the fraction of those DSBs undergoing repair by HR. We also evaluated RPA accretion on chromatin as evidence for ongoing DNA end resection, an important initial step for all pathways of DSB repair except c-NHEJ. We finally employed the DR-GFP reporter assay to evaluate DSB repair by HR in DT40 cells. Collectively, the results obtained, unexpectedly show that DT40 and NALM6 cells utilized HR for DSB repair at levels very similar to those of other somatic cells. These observations uncouple gene-targeting efficiency from HR contribution to DSB repair and suggest the function of additional mechanisms increasing gene-targeting efficiency. Indeed, our results show that analysis of the contribution of HR to DSB repair may not be used as a proxy for gene-targeting efficiency.


Assuntos
Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Linhagem Celular , DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA/genética , Marcação de Genes , Humanos
2.
Sci Rep ; 9(1): 14597, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601897

RESUMO

We previously reported that cells exposed to low doses of ionizing radiation (IR) in the G2-phase of the cell cycle activate a checkpoint that is epistatically regulated by ATM and ATR operating as an integrated module. In this module, ATR interphases exclusively with the cell cycle to implement the checkpoint, mainly using CHK1. The ATM/ATR module similarly regulates DNA end-resection at low IR-doses. Strikingly, at high IR-doses, the ATM/ATR coupling relaxes and each kinase exerts independent contributions to resection and the G2-checkpoint. DNA-PKcs links to the ATM/ATR module and defects cause hyper-resection and hyperactivation of G2-checkpoint at all doses examined. Surprisingly, our present report reveals that cells irradiated in S-phase utilize a different form of wiring between DNA-PKcs/ATM/ATR: The checkpoint activated in G2-phase is regulated exclusively by ATR/CHK1; similarly at high and low IR-doses. DNA end-resection supports ATR-activation, but inhibition of ATR leaves resection unchanged. DNA-PKcs and ATM link now epistatically to resection and their inhibition causes hyper-resection and ATR-dependent G2-checkpoint hyperactivation at all IR-doses. We propose that DNA-PKcs, ATM and ATR form a modular unit to regulate DSB processing with their crosstalk distinctly organized in S- and G2- phase, with strong dependence on DSB load only in G2-phase.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Reparo do DNA , Proteína Quinase Ativada por DNA/fisiologia , Epistasia Genética , Células A549 , Dano ao DNA , Técnica Indireta de Fluorescência para Anticorpo , Fase G2 , Células HCT116 , Humanos , Fosforilação , Radiação Ionizante , Proteína de Replicação A/metabolismo , Fase S
3.
J Cancer Res Clin Oncol ; 143(9): 1733-1744, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28432456

RESUMO

PURPOSE: DNA damage-induced cell death is a major effector mechanism of radiotherapy. Aberrant expression of anti-apoptotic BCL-2 family proteins is frequently observed in lung cancers. Against this background, we studied radioresistance mediated by BCL-2 family proteins at the mechanistic level and its potential as target for radiochemotherapy. METHODS: Lung cancer models stably expressing BCL-xL or MCL-1 were irradiated to study cell death, clonogenic survival, and DNA repair kinetics in vitro, and growth suppression of established tumors in vivo. Additionally, endogenous BCL-xL and MCL-1 were targeted by shRNA or pharmacologic agents prior to irradiation. RESULTS: Radiation exposure induced apoptosis at negligible levels. Yet, anti-apoptotic BCL-xL and MCL-1 expression conferred short-term and long-term radioresistance in vitro and in vivo. Radioresistance correlated with pertubations in homologous recombination repair and repair of DNA double-strand breaks by error-prone, alternative end-joining. Notably, genetic or pharmacologic targeting of BCL-xL or MCL-1 effectively sensitized lung cancer cells to radiotherapy. CONCLUSIONS: In addition to directly suppressing apoptosis, BCL-2 family proteins confer long-term survival benefits to irradiated cancer cells associated with utilization of error-prone repair pathways. Targeting BCL-xL and MCL-1 is an attractive strategy for improving lung cancer radiotherapy.


Assuntos
Reparo do DNA/fisiologia , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tolerância a Radiação/fisiologia , Animais , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
4.
Photochem Photobiol ; 91(5): 1173-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26131740

RESUMO

In eukaryotic cells helix-distorting DNA lesions like cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidone photoproducts (6-4 PPs) are efficiently removed by nucleotide excision repair (NER). NER is a multistep process where in the end, subsequent to replication over the gap, the remaining nick is sealed by a DNA ligase. Lig1 has been implicated as the major DNA ligase in NER. Recently, Lig3 has been implicated as a component of a NER subpathway that operates in dividing cells, but which becomes particularly important in nondividing cells. Here, we use DT40 cells and powerful gene targeting approaches for generating DNA ligase mutants to examine the involvement and contribution of Lig1 and Lig3 in NER using cell survival measured by colony formation, and repair kinetics of CPD by immunofluorescence microscopy and immuno-slot-blotting. Our results demonstrate an impressive and previously undocumented potential of Lig3 to substitute for Lig1 in removing helix-distorting DNA lesions by NER in proliferating cells. We show for the first time in a clean genetic background a functional redundancy in NER between Lig1 and Lig3, which appears to be cell cycle independent and which is likely to contribute to the stability of vertebrate genomes.


Assuntos
DNA Ligases/metabolismo , Reparo do DNA/genética , Animais , Linhagem Celular , DNA Ligase Dependente de ATP , DNA Ligases/genética , Imunofluorescência , Mutação , Proteínas de Ligação a Poli-ADP-Ribose , Raios Ultravioleta , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA