Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochimie ; 197: 96-112, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35151830

RESUMO

Vimentin, an abundant cytoplasmic intermediate filament protein, is recognized for its important role in stabilizing intracellular structure. Vimentin has been recognized for its mechanical role in cell plasticity and stress absorbers. Additionally, the functions of vimentin, similar to all other cytoplasmic intermediate filaments, are correlated to its ability to interact with cellular components responsible for signaling as well as kinases, therefore exerting control on gene regulatory networks. Moreover, several studies reveal a novel form of vimentin present at the surface of the plasma membrane or released in the extracellular environment in different physiological and pathological conditions. Based on data pertaining to vimentin's location outside of the cell, novel functions have emerged. The vimentin promoter is complex and appears to be controlled by a combination of positive and negative regulatory elements. In this review, we first present the involvement of these regulatory elements as well as epigenetic regulation of vimentin in different physiological and pathological contexts, including cell growth, cell differentiation, cancer, epithelial to mesenchymal transition and viral infection. Furthermore, this review also analyzes the secretion of vimentin, its presence at the cell surface, the role of extracellular vimentin as a specific marker, its function as a receptor for the von Willebrand factor as well as the entry of viruses, requirements for pathogen invasion, transcellular migration, and the immune response. Finally, a discussion is featured regarding the delocalization of vimentin that may contribute to diseases and disorders.


Assuntos
Filamentos Intermediários , Viroses , Epigênese Genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Filamentos Intermediários/química , Filamentos Intermediários/metabolismo , Vimentina/genética , Vimentina/metabolismo , Viroses/genética
2.
Mol Cell Neurosci ; 115: 103659, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400333

RESUMO

Peripheral nerve trauma and regeneration are complex events, and little is known concerning how occurrences in the distal stump affect the cell body's response to injury. Intermediate filament (IF) proteins underpin cellular architecture and take part in nerve cell proliferation, differentiation and axon regeneration, but their role in these processes is not yet fully understood. The present study aimed to investigate the regulation and interrelationship of major neural IFs in adult dorsal root ganglion (DRG) neurons and satellite glial cells (SGCs) following sciatic nerve injury. We demonstrated that the expression of neural IFs in DRG neurons and SGCs after axotomy depends on vimentin activity. In intact DRGs, synemin M and peripherin proteins are detected in small neurons while neurofilament L (NFL) and synemin L characterize large neurons. Both neuronal populations are surrounded by vimentin positive- and glial fibrillary acidic protein (GFAP)-negative SGCs. In response to axotomy, synemin M and peripherin were upregulated in large wild-type DRG neurons and, to a lesser extent, in vim-/- and synm-/- DRG neurons, suggesting the role for these IFs in axon regeneration. However, an increase in the number of NFL-positive small neurons was observed in vim-/- mice, accompanied by a decrease of peripherin-positive small neurons. These findings suggest that vimentin is required for injury-induced neuronal IF remodeling. We further show that vimentin is also indispensable for nerve injury-induced GFAP upregulation in perineuronal SGCs and that inactivation of vimentin and synemin appears to accelerate the rate of DRG neurite regeneration at early stages in vitro.


Assuntos
Gânglios Espinais , Filamentos Intermediários , Animais , Axônios , Camundongos , Regeneração Nervosa , Neuroglia , Neurônios , Vimentina
3.
BMJ Open Respir Res ; 7(1)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32913008

RESUMO

We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.


Assuntos
Antivirais/farmacologia , Betacoronavirus/fisiologia , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Vimentina/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Regulação para Baixo , Descoberta de Drogas/métodos , Humanos , Camundongos , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Receptores Virais , SARS-CoV-2 , Replicação Viral/fisiologia
4.
Am J Physiol Cell Physiol ; 318(4): C709-C718, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32023076

RESUMO

This review analyzes data concerning patients with cardiomyopathies or skeletal myopathies associated with a variation in the intermediate filament (IF) synemin gene (SYNM), also referred to as desmuslin (DMN). Molecular studies demonstrate that synemin copolymerizes with desmin and vimentin IF and interacts with vinculin, α-actinin, α-dystrobrevin, dystrophin, talin, and zyxin. It has been found that synemin is an A-kinase-anchoring protein (AKAP) that anchors protein kinase A (PKA) and modulates the PKA-dependent phosphorylation of several cytoskeletal substrates such as desmin. Because several IF proteins, including desmin, have been implicated in human genetic disorders such as dominant or recessive congenital and adult-onset myopathy, synemin becomes a significant candidate for cardiac and skeletal myopathies of unknown etiology. Because SYNM is a new candidate gene that displays numerous sequence polymorphisms, in this review, we summarize the genetic and clinical literature about SYNM mutations. Protein-changing variants (missense, frameshifts, nonsense) were further evaluated based on structural modifications and amino acid interactions. We present in silico modeling of helical salt-bridges between residues to evaluate the impact of the synemin networks crucial to interactions with cytoskeletal proteins. Finally, a discussion is featured regarding certain variants that may contribute to the disease state.


Assuntos
Citoesqueleto/patologia , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Musculares/metabolismo , Doenças Musculares/metabolismo , Animais , Citoesqueleto/metabolismo , Coração/fisiopatologia , Humanos , Filamentos Intermediários/metabolismo , Doenças Musculares/patologia
5.
PLoS One ; 14(4): e0215821, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31013315

RESUMO

Previous studies have shown that proteasome inhibition can have beneficial effects in dystrophic mouse models. In this study, we have investigated the effects of a new selective proteasome inhibitor, CLi, a strong caspase-like inhibitor of the 20S proteasome, on skeletal and cardiac muscle functions of mdx mice. In the first series of experiments, five-month-old male mdx mice (n = 34) were treated with 2 different doses (20 and 100 µg/kg) of CLi and in the second series of experiments, five-month-old female mdx (n = 19) and wild-type (n = 24) mice were treated with 20 µg/kg CLi and Velcade (1 mg/kg) for 1-month. All animals were treadmill exercised twice a week to worsen the dystrophic features. In the first series of experiments, our results demonstrated that 20 µg/kg CLi did not significantly increase absolute and specific maximal forces in skeletal muscle from male mdx mice. Moreover, the higher susceptibility to contraction induced skeletal muscle injury was worsened by 100 µg/kg CLi since the force drop following lengthening contractions was increased with this high dose. Furthermore, we found no differences in the mRNA levels of the molecular markers implicated in dystrophic features. Concerning cardiac function, CLi had no effect on left ventricular function since ejection and shortening fractions were unchanged in male mdx mice. Similarly, CLi did not modify the expression of genes implicated in cardiac remodeling. In the second series of experiments, our results demonstrated an improvement in absolute and specific maximal forces by CLi, whereas Velcade only increased specific maximal force in female mdx mice. In addition, exercise tolerance was not improved by CLi. Taken together, our results show that CLi treatment can only improve maximal force production in exercised female mdx mice without affecting either exercice tolerance capacity or cardiac function. In conclusion, selective inhibition of caspase-like activity of proteasome with CLi has no compelling beneficial effect in dystrophic mdx mice.


Assuntos
Inibidores de Caspase/farmacologia , Contração Muscular/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Piridonas/farmacologia , Animais , Inibidores de Caspase/química , Caspases/genética , Modelos Animais de Doenças , Distrofina/genética , Feminino , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/química , Piridonas/química
6.
J Cell Sci ; 127(Pt 21): 4589-601, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25179606

RESUMO

Synemin, a type IV intermediate filament (IF) protein, forms a bridge between IFs and cellular membranes. As an A-kinase-anchoring protein, it also provides temporal and spatial targeting of protein kinase A (PKA). However, little is known about its functional roles in either process. To better understand its functions in muscle tissue, we generated synemin-deficient (Synm(-) (/-)) mice. Synm(-) (/-) mice displayed normal development and fertility but showed a mild degeneration and regeneration phenotype in myofibres and defects in sarcolemma membranes. Following mechanical overload, Synm(-) (/-) mice muscles showed a higher hypertrophic capacity with increased maximal force and fatigue resistance compared with control mice. At the molecular level, increased remodelling capacity was accompanied by decreased myostatin (also known as GDF8) and atrogin (also known as FBXO32) expression, and increased follistatin expression. Furthermore, the activity of muscle-mass control molecules (the PKA RIIα subunit, p70S6K and CREB1) was increased in mutant mice. Finally, analysis of muscle satellite cell behaviour suggested that the absence of synemin could affect the balance between self-renewal and differentiation of these cells. Taken together, our results show that synemin is necessary to maintain membrane integrity and regulates signalling molecules during muscle hypertrophy.


Assuntos
Hipertrofia/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Desmina/genética , Desmina/metabolismo , Hipertrofia/patologia , Proteínas de Filamentos Intermediários/genética , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/ultraestrutura , Doenças Musculares/genética
7.
Histochem Cell Biol ; 141(1): 1-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24091796

RESUMO

Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.


Assuntos
Cardiomiopatias/genética , Desmina/genética , Doenças Musculares/genética , Distrofias Musculares/genética , Processamento de Proteína Pós-Traducional/genética , Animais , Galinhas , Cricetinae , Desmina/biossíntese , Humanos , Filamentos Intermediários , Camundongos , Células Musculares/citologia , Células Musculares/metabolismo , Contração Muscular , Músculos/citologia
8.
BMC Cell Biol ; 12: 51, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22107957

RESUMO

BACKGROUND: Intermediate filaments (IFs) are major components of the mammalian cytoskeleton and expressed in cell-type-specific patterns. Morphological changes during cell differentiation are linked to IF network remodeling. However, little is known concerning the presence and the role of IFs in embryonic stem (ES) cells and during their differentiation. RESULTS: We have examined the expression profile of synemin isoforms in mouse pluripotent ES cells and during their neural differentiation induced by retinoic acid. Using RT-PCR, Western blotting and immunostaining, we show that synemin M is present at both mRNA and protein levels in undifferentiated ES cells as early as pluripotency factor Oct-3/4 and IF keratin 8. Synemin H was produced only in neural precursors when neural differentiation started, concurrently with synemin M, nestin and glial fibrillary acidic protein. However, both synemin H and M were restricted to the progenitor line during the neural differentiation program. Our in vivo analysis also confirmed the expression of synemins H/M in multipotent neural stem cells in the subventricular zone of the adult brain, a neurogenic germinal niche of the mice. Knocking down synemin in ES cells by shRNA lentiviral particles transduction has no influence on expression of Oct4, Nanog and SOX2, but decreased keratin 8 expression. CONCLUSIONS: Our study shows a developmental stage specific regulation of synemin isoforms in ES cells and its neural derivatives. These findings represent the first evidence that synemins could potentially be useful markers for distinguishing multipotent ES cells from undifferentiated neural stem cells and more committed progenitor cells.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Filamentos Intermediários/metabolismo , Animais , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Proteínas de Filamentos Intermediários/antagonistas & inibidores , Proteínas de Filamentos Intermediários/genética , Queratina-8/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Tretinoína/farmacologia
9.
Biol Aujourdhui ; 205(3): 139-46, 2011.
Artigo em Francês | MEDLINE | ID: mdl-21982403

RESUMO

Intracellular protein filaments intermediate in size between actin filaments and microtubules are composed of a variety of tissue specific proteins. The sequence conservation of the coiled-coil alpha-helical structure responsible for polymerization into individual 10 nm filaments defines a large gene family. Intermediate filaments (IFs) include the nuclear lamins, which are universal in Metazoans, and the cytoplasmic intermediate filaments, which are more varied and form cell type specific networks in animal cells. IFs all share a common tripartite structure consisting of a highly conserved central helical rod domain and variable N-head and C-tail domains. In contrast to actin and tubulin, IFs do not require nucleoside triphosphates such as ATP or GTP for polymerization but they self assemble. According to sequences, the IFs proteins are grouped into seven classes, including five cytoplasmic, one nuclear and one sub-cortical localizations. The search for functions of IFs has led to discoveries of roles in the skin, heart, muscle, liver and brain, in premature aging and of involvement in several degenerative disorders. Mutations in IFs cause or predispose to more than 80 human tissue-specific diseases. Mouse models and gene invalidation have been extremely helpful in eliciting IF role in physiopathology. Besides mechanical role in cell plasticity and stress absorbers, IF functions are related to the capacity to interact with signaling molecules and cell kinases, controlling gene regulatory networks. The reviews herein include a historical perspective about IFs, describe how mutations affect IF structure and assembly properties in desminopathies, inclusion formation in the neurodegenerative Alexander disease, and how they induce multiple disorders in laminopathies.


Assuntos
Doenças Genéticas Inatas/genética , Proteínas de Filamentos Intermediários/fisiologia , Animais , Modelos Animais de Doenças , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Humanos , Proteínas de Filamentos Intermediários/química , Proteínas de Filamentos Intermediários/deficiência , Proteínas de Filamentos Intermediários/genética , Filamentos Intermediários/fisiologia , Filamentos Intermediários/ultraestrutura , Camundongos , Família Multigênica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
J Biol Chem ; 286(50): 43394-404, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21903578

RESUMO

Bronchial biopsies of asthmatic patients show a negative correlation desmin expression in airway smooth muscle cell (ASMC) and airway hyperresponsiveness. We previously showed that desmin is an intracellular load-bearing protein, which influences airway compliance, lung recoil, and airway contractile responsiveness (Shardonofsky, F. R., Capetanaki, Y., and Boriek, A. M. (2006) Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L890-L896). These results suggest that desmin may play an important role in ASMC homeostasis. Here, we report that ASMCs of desmin null mice (ASMCs(Des-/-)) show hypertrophy and up-regulation microRNA-26a (miR-26a). Knockdown of miR-26a in ASMCs(Des-/-) inhibits hypertrophy, whereas enforced expression of miR-26a in ASMCs(Des+/+) induces hypertrophy. We identify that Egr1 (early growth responsive protein-1) activates miR-26a promoter via enhanced phosphorylation of Erk1/2 in ASMCs(Des-/-). We show glycogen synthase kinase-3ß (GSK-3ß) as a target gene of miR-26a. Moreover, induction of ASMCs(Des-/-) hypertrophy by the Erk-1/2/Egr-1/miR-26a/GSK-3ß pathway is consistent in human recombinant ASMCs, which stably suppresses 90% endogenous desmin expression. Overall, our data demonstrate a novel role for desmin as an anti-hypertrophic protein necessary for ASMC homeostasis and identifies desmin as a novel regulator of microRNA.


Assuntos
Desmina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MicroRNAs/metabolismo , Músculo Liso/metabolismo , Músculo Liso/patologia , Traqueia/citologia , Animais , Western Blotting , Divisão Celular/genética , Divisão Celular/fisiologia , Células Cultivadas , Desmina/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Hipertrofia/genética , Hipertrofia/patologia , Camundongos , MicroRNAs/genética , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Exp Cell Res ; 317(6): 886-97, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21262226

RESUMO

Disorganization of the desmin network is associated with cardiac and skeletal myopathies characterized by accumulation of desmin-containing aggregates in the cells. Multiple associations of intermediate filament proteins form a network to increase mechanical and functional stability. Synemin is a desmin-associated type VI intermediate filament protein. Neither its impact on desmin network nor how it integrates into desmin filament is yet elucidated. To gain more insight into the molecular basis of these processes, we coexpressed synemin with different desmin mutants in ex vivo models. The screening of fourteen desmin mutants showed that synemin with desmin mutants revealed two behaviors. Firstly, synemin was co-localized in desmin aggregates and its coexpression decreased the number of cells containing aggregates. Secondly, synemin was excluded from the aggregates, then synemin had no effect on desmin network organization. Among fourteen desmin mutants, there were only three mutants, p.E401K, p.R406W and p.E413K, in which synemin was not found in aggregates. This behavior was correlated to the abnormal salt-bridges of desmin-dimer as seen in silico constructs. Moreover, desmin constructs in silico and published results in literature have predicted that the salt-bridges absence in the desmin filament building prevent longitudinal annealing and/or radial compaction. These results suggest that the state of desmin-filament assembly is crucial for synemin anchorage and consequently might involve mechanical and functional stability of the cytoskeletal network.


Assuntos
Citoesqueleto/metabolismo , Desmina/genética , Desmina/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Mutação , Motivos de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Camundongos , Modelos Moleculares , Mioblastos/citologia , Mioblastos/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína
12.
J Interv Card Electrophysiol ; 28(2): 71-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20390331

RESUMO

PURPOSE: Desmin mutations in humans cause desmin-related cardiomyopathy, resulting in heart failure, atrial and ventricular arrhythmias, and sudden cardiac death. The intermediate filament desmin is strongly expressed in striated muscle cells and in Purkinje fibers of the ventricular conduction system. The aim of the present study was to characterize electrophysiological cardiac properties in a desmin-deficient mouse model. METHODS: The impact of desmin deficiency on cardiac electrophysiological characteristics was examined in the present study. In vivo electrophysiological studies were carried out in 29 adult desmin deficient (Des-/-) and 19 wild-type (Des+/+) mice. Additionally, epicardial activation mapping was performed in Langendorff-perfused hearts. RESULTS: Intracardiac electrograms showed no significant differences in AV, AH, and HV intervals. Functional testing revealed equal AV-nodal refractory periods, sinus-node recovery times, and Wenckebach points. However, compared to the wild-type situation, Des-/- mice were found to have a significantly reduced atrial (23.6+/-10.3 ms vs. 31.8+/-12.5 ms; p=0.045), but prolonged ventricular refractory period (33.0+/-8.7 ms vs. 26.7+/-6.5 ms; p=0.009). The probability of induction of atrial fibrillation was significantly higher in Des-/- mice (Des-/-: 38% vs. Des+/+: 27%; p=0.0255), while ventricular tachycardias significantly were reduced (Des-/-: 7% vs. Des+/+: 21%; p<0.0001). Epicardial activation mapping showed slowing of conduction in the ventricles of Des-/- mice. CONCLUSIONS: Des-/- mice exhibit reduced atrial but prolonged ventricular refractory periods and ventricular conduction slowing, accompanied by enhanced inducibility of atrial fibrillation and diminished susceptibility to ventricular arrhythmias. Desmin deficiency does not result in electrophysiological changes present in human desminopathies, suggesting that functional alterations rather than loss of desmin cause the cardiac alterations in these patients.


Assuntos
Sistema de Condução Cardíaco/fisiopatologia , Animais , Fibrilação Atrial/fisiopatologia , Desmina/deficiência , Eletrocardiografia , Técnicas Eletrofisiológicas Cardíacas , Genótipo , Frequência Cardíaca/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
13.
Exp Cell Res ; 316(3): 491-505, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19853601

RESUMO

Synemin is a unique cytoplasmic intermediate filament protein for which there is limited understanding of its exact cellular functions. The single human synemin gene encodes at least two splice variants named alpha-synemin and beta-synemin, with the larger alpha-synemin containing an additional 312 amino acid insert within the C-terminal tail domain. We report herein that, by using the entire tail domain of the smaller beta-synemin as the bait in a yeast two-hybrid screen of a human skeletal muscle cDNA library, the LIM domain protein zyxin was identified as an interaction partner for human synemin. The synemin binding site in human zyxin was subsequently mapped to the C-terminal three tandem LIM-domain repeats, whereas the binding site for zyxin within beta-synemin is within the C-terminal 332 amino acid region (SNbetaTII) at the end of the long tail domain. Transient expression of SNbetaTII within mammalian cells markedly reduced zyxin protein level, blocked localization of zyxin at focal adhesion sites and resulted in decreased cell adhesion and increased motility. Knockdown of synemin expression with siRNAs within mammalian cells resulted in significantly compromised cell adhesion and cell motility. Our results suggest that synemin participates in focal adhesion dynamics and is essential for cell adhesion and migration.


Assuntos
Movimento Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Animais , Sítios de Ligação , Adesão Celular , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas de Filamentos Intermediários/química , Camundongos , Células NIH 3T3 , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , Ressonância de Plasmônio de Superfície , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Zixina
14.
Biochem Biophys Res Commun ; 391(1): 203-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19903461

RESUMO

Transcriptional activity of serum response factor (SRF) is dependent on its binding to the CC(A/T)(6)GG box (CArG box) of serum response element (SRE). By Raman spectroscopy, we carried out a comparative analysis, in solution, of the complexes obtained from the association of core-SRF with 20-mer SREs bearing wild-type and mutated c-fos CArG boxes. In case of association with the wild type c-fos CArG box, the complex does not bring out the expected Raman signature of a stable bending of the targeted SRE but keeps a bend-linear conformer oligonucleotide interconversion. The linear conformer population is larger than that of free oligonucleotide. In the core-SRF moiety of the wild-type complex a large spectral change associated with the CO-groups from Asp and/or Glu residues shows that their ionization states and the strength of their interactions decrease as compared to those of mutated non-specific complexes. Structural constraints evidenced on the free core-SRF are released in the wild-type complex and environmental heterogeneities appear in the vicinity of Tyr residues, due to higher water molecule access. The H-bonding configuration of one Tyr OH-group, in average, changes with a net transfer from H-bond acceptor character to a combined donor and acceptor character. A charge repartition distributed on both core-SRF and targeted SRE stabilizes the specific complex, allowing the two partners to experience a variety of conformations.


Assuntos
Regulação da Expressão Gênica , Elemento de Resposta Sérica , Fator de Resposta Sérica/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Fator de Resposta Sérica/química , Fator de Resposta Sérica/genética , Análise Espectral Raman , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
15.
Biomaterials ; 30(32): 6460-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19716600

RESUMO

The hypothesis that E-selectin on activated endothelial cells could be exploited to selectively target drug delivery systems to tumor vasculature was investigated. HPMA copolymer-doxorubicin (DOX) conjugates displaying the high affinity E-selectin binding peptide (Esbp, primary sequence DITWDQLWDLMK) as targeting ligand were synthesized and tested for their cytotoxicity and intracellular fate in human immortalized vascular endothelial cells (IVECs). The targeted copolymers displaying multiple copies of Esbp are bound to surface-associated E-selectin with affinity at the low nano-molar range, three orders of magnitude stronger than the free Esbp. In addition, the binding affinity of the HPMA-Esbp copolymers to E-selectin expressing IVECs was found to be 10-fold superior relative to non-targeted copolymers. Once bound, E-selectin facilitated rapid internalization and lysosomal trafficking of the copolymers. This lysosomotropism of HPMA-Esbp-bound DOX copolymers was then correlated with a 150-fold higher cytotoxicity relative to non-targeted HPMA-DOX conjugates. These findings strongly support the emerging role of E-selectin as a viable target for controlled drug delivery in cancer therapy.


Assuntos
Acrilamidas/administração & dosagem , Acrilamidas/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/química , Selectina E/química , Selectina E/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Galactosamina/administração & dosagem , Galactosamina/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células HL-60 , Humanos , Teste de Materiais
16.
J Med Chem ; 52(19): 5906-15, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19746918

RESUMO

The site-specific expression of molecular markers on endothelial cells of blood vessels during inflammatory response and angiogenesis provides an opportunity to target drugs and imaging molecules to the vascular endothelium of diseased tissues. This paper describes an innovative strategy for selective delivery of polymer conjugates to E- and P-selectin expressing cells using a series of quinic acid (Qa) based non-carbohydrate analogues of the natural ligand sialyl Lewis(x) (sLe(x)) as targeting moieties. We demonstrate that such analogues antagonize the adhesion of sLe(x) expressing HL-60 cells to both E- and P-selectin. Significantly, the apparent avidity of polymer conjugates carrying multiple Qa copies has increased by 3 orders of magnitude relative to their monomeric forms. Furthermore, we found that the major mechanism of copolymer entry and delivery into E-selectin expressing cells is endocytosis. These selectin-targetable copolymers provide the foundation to support controlled delivery of anticancer drugs and imaging agents to tumor vasculature for therapeutic and diagnostic applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Selectina E/metabolismo , Endocitose , Ácido Quínico/análogos & derivados , Antineoplásicos/administração & dosagem , Adesão Celular , Diagnóstico por Imagem/métodos , Células HL-60 , Humanos , Ligantes , Selectina-P/metabolismo , Polímeros/farmacocinética , Ácido Quínico/farmacocinética
17.
Exp Cell Res ; 315(5): 769-83, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19124017

RESUMO

The intermediate filament (IF) synemin gene encodes three IF proteins (H 180, M 150, L 41 kDa isoforms) with overlapping distributions. In the present study we analysed the mRNA and protein expression of each isoform in developing mouse embryos. Synemin M mRNA was present as early as E5 with vimentin and nestin. Synemin H was found later at E9 in the nervous system and mesodermic derivatives concomitantly with angiogenesis, somitogenesis and the migration of neural crest cells. Synemin L appeared later in neurons at E15. Furthermore, the synemin isoforms required different IF partners depending on the cell type to form filamentous structures. In endothelial cells, synemin H/M were found associated with vimentin and were absent in vimentin-null mice. In neurons of the peripheral nervous system of E15 embryos, synemin H/M or L were co-expressed with neurofilament, peripherin and internexin. In adult mice, our data support the existence of different subpopulations of neurons within the dorsal root ganglia: one composed of small neurons containing synemin H/M and peripherin, and another composed of large neurons containing synemin L and neurofilaments. Axons devoid of neurofilaments from mutant mice (NFHLacZ) showed an absence of the L isoform but contained H/M isoforms with peripherin.


Assuntos
Vasos Sanguíneos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Vasos Sanguíneos/embriologia , Padronização Corporal/genética , Células Cultivadas , Óperon Lac , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Distribuição Tecidual , Transfecção , Vimentina/genética , Vimentina/metabolismo
18.
Dev Cell ; 15(3): 448-461, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18804439

RESUMO

Serum response factor (SRF) is a transcription factor that controls the expression of cytoskeletal proteins and immediate early genes in different cell types. Here, we found that SRF expression is restricted to endothelial cells (ECs) of small vessels such as capillaries in the mouse embryo. EC-specific Srf deletion led to aneurysms and hemorrhages from 11.5 days of mouse development (E11.5) and lethality at E14.5. Mutant embryos presented a reduced capillary density and defects in EC migration, with fewer numbers of filopodia in tip cells and ECs showing defects in actin polymerization and intercellular junctions. We show that SRF is essential for the expression of VE-cadherin and beta-actin in ECs both in vivo and in vitro. Moreover, knockdown of SRF in ECs impaired VEGF- and FGF-induced in vitro angiogenesis. Taken together, our results demonstrate that SRF plays an important role in sprouting angiogenesis and small vessel integrity in the mouse embryo.


Assuntos
Vasos Sanguíneos/anatomia & histologia , Embrião de Mamíferos/anatomia & histologia , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Fator de Resposta Sérica/metabolismo , Actinas/metabolismo , Aneurisma/genética , Aneurisma/patologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Caderinas/genética , Caderinas/metabolismo , Embrião de Mamíferos/patologia , Embrião de Mamíferos/fisiologia , Células Endoteliais/citologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Hemorragia/genética , Hemorragia/mortalidade , Junções Intercelulares/metabolismo , Junções Intercelulares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo , Fator de Resposta Sérica/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Biochemistry ; 47(36): 9531-9, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18702527

RESUMO

The mechanisms regulating the intermediate filament (IF) protein assembly are complex and not yet fully understood. All vertebrate cytoplasmic IF proteins have a central alpha-helical rod domain flanked by variable head and tail domains. The IF protein synemin cannot homopolymerize to form filament networks; it needs an appropriate copolymerization partner. To elucidate the roles of the vimentin head domain, the TAAL motif in the 2A region, and the TYRKLLEGEE motif in the 2B region of the rod domain in synemin filament formation, we have prepared a series of synemin constructs by site-directed mutagenesis and chimeric synemins having the vimentin head domain. The assembly properties of synemin constructs were assessed by the immunofluorescence of transient transfection into cultured SW13 cells without endogenous IFs. Our data showed that the formation of a filamentous network required at least the vimentin-like head domain and both the 2A and 2B regions of the rod domain.


Assuntos
Proteínas de Filamentos Intermediários/metabolismo , Motivos de Aminoácidos/fisiologia , Linhagem Celular Tumoral , Humanos , Proteínas de Filamentos Intermediários/genética , Mutagênese Sítio-Dirigida , Mutação Puntual , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Eur J Heart Fail ; 10(7): 635-45, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18501668

RESUMO

BACKGROUND AND AIMS: Regional alterations in ventricular mechanical functions are a primary determinant for the risk of myocardial injuries in various cardiomyopathies. The serum response factor (SRF) is a transcription factor regulating contractile and cytoskeletal genes and may play an important role in the remodelling of myocardium at the cellular level. METHODS: Using Desmin-Cre transgenic mice, we generated a model of mosaic inactivation of a floxed-Srf allele in the heart to analyze the consequence of regional alterations of SRF-mediated functions in the myocardium. RESULTS: Two types of cardiomyocytes co-existed in the Desmin-Cre:Sf/Sf mice. Cardiomyocytes lacking SRF became thin and elongated while cardiomyocytes containing SRF became hypertrophic. Several physiological contractile genes were down-regulated while skeletal alpha-actin was induced in SRF positive area only. Mutants developed heart failure associated with the presence of focal lesions in the myocardium, and died before month 11. CONCLUSIONS: Juxtaposition of functional SRF wild-type and failing SRF mutant cardiomyocytes generates deleterious heterogeneity in the myocardium. Our results show that SRF contributes to the capacity of cardiomyocytes to remodel their shape and contractile functions in response to their local environment; suggesting that it may play a role in pathologies involving regional alterations of ventricular mechanics in the heart.


Assuntos
Cardiomiopatia Hipertrófica/genética , Insuficiência Cardíaca/genética , Mosaicismo , Miocárdio/metabolismo , Fator de Resposta Sérica/genética , Alelos , Análise de Variância , Animais , Cardiomiopatia Hipertrófica/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA