Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 246(4): 447-458, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30101525

RESUMO

Aggressive tumor cells can adopt an endothelial cell-like phenotype and contribute to the formation of a tumor vasculature, independent of tumor angiogenesis. This adoptive mechanism is referred to as vascular mimicry and it is associated with poor survival in cancer patients. To what extent tumor cells capable of vascular mimicry phenocopy the angiogenic cascade is still poorly explored. Here, we identify pericytes as important players in vascular mimicry. We found that pericytes are recruited by vascular mimicry-positive tumor cells in order to facilitate sprouting and to provide structural support of the vascular-like networks. The pericyte recruitment is mediated through platelet-derived growth factor (PDGF)-B. Consequently, preventing PDGF-B signaling by blocking the PDGF receptors with either the small tyrosine kinase inhibitor imatinib or blocking antibodies inhibits vascular mimicry and tumor growth. Collectively, the current study identifies an important role for pericytes in the formation of vascular-like structures by tumor cells. Moreover, the mechanism that controls the pericyte recruitment provides therapeutic opportunities for patients with aggressive vascular mimicry-positive cancer types. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Mimetismo Biológico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica , Pericitos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Nus , Pericitos/metabolismo , Pericitos/patologia , Fator de Crescimento Derivado de Plaquetas/imunologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Oncotarget ; 6(23): 19634-46, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26189059

RESUMO

Aggressive tumor cells can obtain the ability to transdifferentiate into cells with endothelial features and thus form vasculogenic networks. This phenomenon, called vasculogenic mimicry (VM), is associated with increased tumor malignancy and poor clinical outcome. To identify novel key molecules implicated in the process of vasculogenic mimicry, microarray analysis was performed to compare gene expression profiles of aggressive (VM+) and non-aggressive (VM-) cells derived from Ewing sarcoma and breast carcinoma. We identified the CD44/c-Met signaling cascade as heavily relevant for vasculogenic mimicry. CD44 was at the center of this cascade, and highly overexpressed in aggressive tumors. Both CD44 standard isoform and its splice variant CD44v6 were linked to increased aggressiveness in VM. Since VM is most abundant in Ewing sarcoma tumors functional analyses were performed in EW7 cells. Overexpression of CD44 allowed enhanced adhesion to its extracellular matrix ligand hyaluronic acid. CD44 expression also facilitated the formation of vasculogenic structures in vitro, as CD44 knockdown experiments repressed migration and vascular network formation. From these results and the observation that CD44 expression is associated with vasculogenic structures and blood lakes in human Ewing sarcoma tissues, we conclude that CD44 increases aggressiveness in tumors through the process of vasculogenic mimicry.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Transdiferenciação Celular , Células Endoteliais/metabolismo , Receptores de Hialuronatos/metabolismo , Neovascularização Patológica , Sarcoma de Ewing/metabolismo , Mimetismo Biológico , Neoplasias Ósseas/irrigação sanguínea , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Adesão Celular , Movimento Celular , Células Endoteliais/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Células MCF-7 , Fenótipo , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Interferência de RNA , Sarcoma de Ewing/irrigação sanguínea , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transdução de Sinais , Transfecção
3.
PLoS One ; 8(3): e58083, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483971

RESUMO

Initiation of and progression through chondrogenesis is driven by changes in the cellular microenvironment. At the onset of chondrogenesis, resting mesenchymal stem cells are mobilized in vivo and a complex, step-wise chondrogenic differentiation program is initiated. Differentiation requires coordinated transcriptomic reprogramming and increased progenitor proliferation; both processes require chromatin remodeling. The nature of early molecular responses that relay differentiation signals to chromatin is poorly understood. We here show that immediate early genes are rapidly and transiently induced in response to differentiation stimuli in vitro. Functional ablation of the immediate early factor EGR1 severely deregulates expression of key chondrogenic control genes at the onset of differentiation. In addition, differentiating cells accumulate DNA damage, activate a DNA damage response and undergo a cell cycle arrest and prevent differentiation associated hyper-proliferation. Failed differentiation in the absence of EGR1 affects global acetylation and terminates in overall histone hypermethylation. We report novel molecular connections between EGR1 and Polycomb Group function: Polycomb associated histone H3 lysine27 trimethylation (H3K27me3) blocks chromatin access of EGR1. In addition, EGR1 ablation results in abnormal Ezh2 and Bmi1 expression. Consistent with this functional interaction, we identify a number of co-regulated targets genes in a chondrogenic gene network. We here describe an important role for EGR1 in early chondrogenic epigenetic programming to accommodate early gene-environment interactions in chondrogenesis.


Assuntos
Condrogênese/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Epigênese Genética , Genes Precoces/genética , Proteínas do Grupo Polycomb/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Dano ao DNA/genética , Replicação do DNA/genética , Redes Reguladoras de Genes/genética , Histonas/metabolismo , Camundongos , Fatores de Transcrição SOX9/metabolismo , Estresse Fisiológico/genética
4.
Biochim Biophys Acta ; 1806(1): 18-28, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20079807

RESUMO

Solid tumour growth is dependent on the development of an adequate blood supply. For years, sprouting angiogenesis has been considered an exclusive mechanism of tumour vascularization. However, over the last years, several other mechanisms have been identified, including vessel-co-option, intussusception, recruitment of endothelial precursor cells (EPCs) and even mechanisms that do not involve endothelial cells, a process called vasculogenic mimicry (VM). The latter describes a mechanism by which highly aggressive tumour cells can form vessel-like structures themselves, by virtue of their high plasticity. VM has been observed in several tumour types and its occurrence is strongly associated with a poor prognosis. This review will focus on signalling molecules and cascades involved in VM. In addition, we will discuss the presence of VM in relation to ongoing cancer research. Finally, we describe the clinical significance of VM regarding anti-angiogenesis treatment modalities.


Assuntos
Neoplasias/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Transdução de Sinais/fisiologia , Animais , AMP Cíclico/fisiologia , Humanos , Melanoma/irrigação sanguínea , Células-Tronco Neoplásicas/fisiologia , Ligantes da Sinalização Nodal/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Proteína Wnt-5a
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA