Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(17): 9545-9559, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32722882

RESUMO

RNF4, a poly-SUMO-specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress-induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2 O2 /ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML-NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2 O2 /ATO-induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno-associated virus infection deteriorated post-MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia-induced cardiac dysfunction of MI models. Our results reveal a novel myocardial apoptosis regulation model that is composed of RNF4, PML and p53. The modulation of these proteins may provide a new approach to tackling cardiac ischaemia.


Assuntos
Apoptose/genética , Isquemia/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Fibrose/genética , Masculino , Camundongos , Infarto do Miocárdio/genética , Estresse Oxidativo/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Sumoilação/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética
2.
Toxicol Appl Pharmacol ; 345: 1-9, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29524504

RESUMO

BACKGROUND AND PURPOSE: Protein modification by small ubiquitin-like modifier (SUMO) plays a critical role in the pathogenesis of heart diseases. The present study was designed to determine whether ginkgolic acid (GA) as a SUMO-1 inhibitor exerts an inhibitory effect on cardiac fibrosis induced by myocardial infarction (MI). EXPERIMENTAL APPROACH: GA was delivered by osmotic pumps in MI mice. Masson staining, electron microscopy (EM) and echocardiography were used to assess cardiac fibrosis, ultrastructure and function. Expression of SUMO-1, PML, TGF-ß1 and Pin1 was measured with Western blot or Real-time PCR. Collagen content, cell viability and myofibroblast transformation were measured in neonatal mouse cardiac fibroblasts (NMCFs). Promyelocytic leukemia (PML) protein was over-expressed by plasmid transfection. KEY RESULTS: GA improved cardiac fibrosis and dysfunction, and decreased SUMO-1 expression in MI mice. GA (>20 µM) inhibited NMCF viability in a dose-dependent manner. Nontoxic GA (10 µM) restrained angiotensin II (Ang II)-induced myofibroblast transformation and collagen production. GA also inhibited expression of TGF-ß1 mRNA and protein in vitro and in vivo. GA suppressed PML SUMOylation and PML nuclear body (PML-NB) organization, and disrupted expression and recruitment of Pin1 (a positive regulator of TGF-ß1 mRNA), whereas over-expression of PML reversed that. CONCLUSIONS AND IMPLICATIONS: Inhibition of SUMO-1 by GA alleviated MI-induced heart dysfunction and fibrosis, and the SUMOylated PML/Pin1/TGF-ß1 pathway is crucial for GA-inhibited cardiac fibrosis.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Proteína SUMO-1/antagonistas & inibidores , Salicilatos/uso terapêutico , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proteína SUMO-1/metabolismo , Salicilatos/farmacologia , Volume Sistólico/efeitos dos fármacos , Volume Sistólico/fisiologia
3.
Malar J ; 13: 264, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25007802

RESUMO

BACKGROUND: Resistance to anti-malarials is a major public health problem worldwide. After deployment of artemisinin-based combination therapy (ACT) there have been reports of reduced sensitivity to ACT by malaria parasites in South-East Asia. In Tanzania, artemether-lumefantrine (ALu) is the recommended first-line drug in treatment of uncomplicated malaria. This study surveyed the distribution of the Plasmodium falciparum multidrug resistance protein-1 single nucleotide polymorphisms (SNPs) associated with increased parasite tolerance to ALu, in Tanzania. METHODS: A total of 687 Plasmodium falciparum positive dried blood spots on filter paper and rapid diagnostic test strips collected by finger pricks from patients attending health facilities in six regions of Tanzania mainland between June 2010 and August 2011 were used. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to detect Pfmdr1 SNPs N86Y, Y184F and D1246Y. RESULTS: There were variations in the distribution of Pfmdr1 polymorphisms among regions. Tanga region had exceptionally high prevalence of mutant alleles, while Mbeya had the highest prevalence of wild type alleles. The haplotype YFY was exclusively most prevalent in Tanga (29.6%) whereas the NYD haplotype was the most prevalent in all other regions. Excluding Tanga and Mbeya, four, most common Pfmdr1 haplotypes did not vary between the remaining four regions (χ² = 2.3, p = 0.512). The NFD haplotype was the second most prevalent haplotype in all regions, ranging from 17% - 26%. CONCLUSION: This is the first country-wide survey on Pfmdr1 mutations associated with ACT resistance. Distribution of individual Pfmdr1 mutations at codons 86, 184 and 1246 varies throughout Tanzanian regions. There is a general homogeneity in distribution of common Pfmdr1 haplotypes reflecting strict implementation of ALu policy in Tanzania with overall prevalence of NFD haplotype ranging from 17 to 26% among other haplotypes. With continuation of ALu as first-line drug this haplotype is expected to keep rising, thus there is need for continued pharmacovigilance studies to monitor any delayed parasite clearance by the drug.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Etanolaminas/farmacologia , Fluorenos/farmacologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Combinação Arteméter e Lumefantrina , Criança , Pré-Escolar , Combinação de Medicamentos , Monitoramento Epidemiológico , Feminino , Frequência do Gene , Genótipo , Haplótipos , Humanos , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Plasmodium falciparum/genética , Mutação Puntual , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Tanzânia/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA