Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Reprod Toxicol ; 101: 93-114, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617935

RESUMO

There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.


Assuntos
Acrilamida/toxicidade , Exposição Dietética/efeitos adversos , Síndromes Neurotóxicas/embriologia , Acrilamida/farmacocinética , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Manipulação de Alimentos , Humanos , Troca Materno-Fetal , Gravidez
2.
Reprod Toxicol ; 100: 17-34, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33333158

RESUMO

Halogenated persistent organic pollutants (POPs) like perfluorinated alkylated substances (PFASs), brominated flame retardants (BFRs), organochlorine pesticides and polychlorinated biphenyls (PCBs) are known to cause cancer, immunotoxicity, neurotoxicity and interfere with reproduction and development. Concerns have been raised about the impact of POPs upon brain development and possibly neurodevelopmental disorders. The developing brain is a particularly vulnerable organ due to dynamic and complex neurodevelopmental processes occurring early in life. However, very few studies have reported on the effects of POP mixtures at human relevant exposures, and their impact on key neurodevelopmental processes using human in vitro test systems. Aiming to reduce this knowledge gap, we exposed mixed neuronal/glial cultures differentiated from neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) to reconstructed mixtures of 29 different POPs using concentrations comparable to Scandinavian human blood levels. Effects of the POP mixtures on neuronal proliferation, differentiation and synaptogenesis were evaluated using in vitro assays anchored to common key events identified in the existing developmental neurotoxicity (DNT) adverse outcome pathways (AOPs). The present study showed that mixtures of POPs (in particular brominated and chlorinated compounds) at human relevant concentrations increased proliferation of NSCs and decreased synapse number. Based on a mathematical modelling, synaptogenesis and neurite outgrowth seem to be the most sensitive DNT in vitro endpoints. Our results indicate that prenatal exposure to POPs may affect human brain development, potentially contributing to recently observed learning and memory deficits in children.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Halogenação , Células-Tronco Neurais/fisiologia , Poluentes Orgânicos Persistentes/toxicidade , Sinapses/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Fator Neurotrófico Derivado do Encéfalo/análise , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Teóricos , Células-Tronco Neurais/química , Neuritos/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Poluentes Orgânicos Persistentes/sangue , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Receptores de Hidrocarboneto Arílico/genética
3.
Pharmacol Res Perspect ; 7(3): e00480, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31164987

RESUMO

N-methyl-d-aspartate receptors (NMDAR) are widely expressed in the brain. GluN2B subunit-containing NMDARs has recently attracted significant attention as potential pharmacological targets, with emphasis on the functional properties of allosteric antagonists. We used primary cultures from chicken embryo forebrain (E10), expressing native GluN2B-containing NMDA receptors as a novel model system. Comparing the inhibition of calcium influx by well-known GluN2B subunit-specific allosteric antagonists, the following rank order of potency was found: EVT-101 (EC 50 22 ± 8 nmol/L) > Ro 25-6981 (EC 50 60 ± 30 nmol/L) > ifenprodil (EC 50 100 ± 40 nmol/L) > eliprodil (EC 50 1300 ± 700 nmol/L), similar to previous observations in rat cortical cultures and cell lines overexpressing chimeric receptors. The less explored Ro 04-5595 had an EC 50 of 186 ± 32 nmol/L. Venturing to explain the differences in potency, binding properties were further studied by in silico docking and molecular dynamics simulations using x-ray crystal structures of GluN1/GluN2B amino terminal domain. We found that Ro 04-5595 was predicted to bind the recently discovered EVT-101 binding site, not the ifenprodil-binding site. The EVT-101 binding pocket appears to accommodate more structurally different ligands than the ifenprodil-binding site, and contains residues essential in ligand interactions necessary for calcium influx inhibition. For the ifenprodil site, the less effective antagonist (eliprodil) fails to interact with key residues, while in the EVT-101 pocket, difference in potency might be explained by differences in ligand-receptor interaction patterns.


Assuntos
Imidazóis/administração & dosagem , Piperidinas/administração & dosagem , Prosencéfalo/citologia , Piridazinas/administração & dosagem , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Células HEK293 , Humanos , Imidazóis/química , Imidazóis/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fenóis/administração & dosagem , Fenóis/química , Fenóis/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Domínios Proteicos , Piridazinas/química , Piridazinas/farmacologia , Ratos
4.
Toxicol Appl Pharmacol ; 354: 196-214, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29550511

RESUMO

Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.


Assuntos
Comportamento do Adolescente/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Encéfalo/efeitos dos fármacos , Comportamento Infantil/efeitos dos fármacos , Desenvolvimento Infantil/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Adolescente , Desenvolvimento do Adolescente/efeitos dos fármacos , Fatores Etários , Animais , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Prevalência , Medição de Risco , Fatores de Risco
5.
PLoS One ; 13(3): e0194896, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566083

RESUMO

More than 90% of the cases of Parkinson's disease have unknown etiology. Gradual loss of dopaminergic neurons of substantia nigra is the main cause of morbidity in this disease. External factors such as environmental toxins are believed to play a role in the cell loss, although the cause of the selective vulnerability of dopaminergic neurons remains unknown. We have previously shown that aquaglyceroporin AQP9 is expressed in dopaminergic neurons and astrocytes of rodent brain. AQP9 is permeable to a broad spectrum of substrates including purines, pyrimidines, and lactate, in addition to water and glycerol. Here we test our hypothesis that AQP9 serves as an influx route for exogenous toxins and, hence, may contribute to the selective vulnerability of nigral dopaminergic (tyrosine hydroxylase-positive) neurons. Using Xenopus oocytes injected with Aqp9 cRNA, we show that AQP9 is permeable to the parkinsonogenic toxin 1-methyl-4-phenylpyridinium (MPP+). Stable expression of AQP9 in HEK cells increases their vulnerability to MPP+ and to arsenite-another parkinsonogenic toxin. Conversely, targeted deletion of Aqp9 in mice protects nigral dopaminergic neurons against MPP+ toxicity. A protective effect of Aqp9 deletion was demonstrated in organotypic slice cultures of mouse midbrain exposed to MPP+ in vitro and in mice subjected to intrastriatal injections of MPP+ in vivo. Seven days after intrastriatal MPP+ injections, the population of tyrosine hydroxylase-positive cells in substantia nigra is reduced by 48% in Aqp9 knockout mice compared with 67% in WT littermates. Our results show that AQP9 -selectively expressed in catecholaminergic neurons-is permeable to MPP+ and suggest that this aquaglyceroporin contributes to the selective vulnerability of nigral dopaminergic neurons by providing an entry route for parkinsonogenic toxins. To our knowledge this is the first evidence implicating a toxin permeable membrane channel in the pathophysiology of Parkinson's disease.


Assuntos
Aquaporinas/genética , Neuroproteção/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacocinética , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Deleção de Genes , Células HEK293 , Humanos , Intoxicação por MPTP/genética , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Xenopus laevis
6.
Free Radic Res ; 52(2): 273-287, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29405079

RESUMO

Oestrogens with no or reduced oestrogen receptor (ER) binding properties are reported to have neuroprotective functions. However, we have previously shown that the hormonally inactive isomer of 17ß-estradiol (17ß-E), 17α-estradiol (17α-E), down-regulates glutathione (GSH) synthesis, and fails to rescue serum deprivation-induced cell death in the rat pheochromocytoma cell line PC12 in micromolar concentration. The present study examined cellular protective effects of new 17ß-E analogs and 2-methoxyestradiol (2-ME) analogs with no or little oestrogen activity. 17ß-E, 17α-E, 2-ME, and an antagonist of the G protein-coupled oestrogen receptor (GPER), G36, were also included. Both 17α-E and 2-ME protected against deprivation-induced cell death in PC12 cells at 1 nM, but they enhanced the deprivation-induced cell death accompanied by caspase 3 activity and decreased intracellular GSH levels during deprivation at 10 µM. In addition, 10 µM 17α-E activated the p38 mitogen activated protein kinase pathway, which was linked to the enhanced death and reduced GSH levels. Analogs of 2-ME modified with a 6-isoquinoline moiety (6iq) protected against deprivation-induced cell death at 1 nM and did not interfere with the GSH levels nor increase p38 protein levels at 10 µM. The promoter activity of the catalytic subunit of the rate-limiting enzyme, glutamate cysteine ligase (GCLC) in GSH synthesis as well as protein levels of GCLC and Nrf2, increased with the 2-ME analogs at 10 µM. In conclusion, the steroids have differential protective effects, and modifying 2-ME may give the steroid more favourable properties than 17α-E, 2-ME, and G36 in regard to GSH regulation.


Assuntos
Apoptose , Congêneres do Estradiol/farmacologia , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , 2-Metoxiestradiol , Animais , Estradiol/análogos & derivados , Estradiol/farmacologia , Glutamato-Cisteína Ligase , Glutationa , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Células PC12 , Ratos , Transdução de Sinais
7.
Biochem Biophys Res Commun ; 490(3): 676-681, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28634070

RESUMO

17α-estradiol is a hormonally inactive isomer of 17ß-estradiol, but with similar potency as neuroprotector. However, we have previously reported that pretreatment with high concentration (10 µM) of both estrogens abolishes their neuroprotection in rat cerebellar granule neurons. Here, we have examined neuroprotective properties of 17α-estradiol against glutamate-induced excitotoxicity in chicken cerebellar granule neurons using low (1 nM) and high concentration.17α-Estradiol, 1 nM, was neuroprotective when glutamate was administered after a pretreatment period of 24 h, but not when coadministered with glutamate. In contrast, 10 µM was protective when coadministered with glutamate, but was not efficient when glutamate was administered after a pretreatment period. The difference in protection was linked to a stronger calcium response during glutamate exposure in the non-protective treatments. In addition, the pretreatment period with 10 µM was accompanied by increased protein level of the N-methyl-d-aspartate receptor subunit NR2B and reduced glutathione level. Thus, 17α-estradiol has a concentration and time dependent protective effect against glutamate-induced cell death.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Galinhas , Estradiol/administração & dosagem , Estrogênios/administração & dosagem , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Dev Neurosci ; 55: 82-90, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27769911

RESUMO

Immediate early gene nerve growth factor-induced clone B (NGFI-B), a nuclear receptor important for differentiation and apoptosis, is expressed in mice and rat cerebellum from an early stage of postnatal development. Following apoptotic stimuli NGFI-B translocates to mitochondria to initiate cell death processes. Controlled cell death is critical for correct cerebellar development. Immunohistochemical analysis of NGFI-B in sections of mice cerebella showed NGFI-B to be expressed in granule neurons in vivo at a time (P8-11) when apoptosis is known to occur. The importance of NGFI-B for apoptosis of cultured rat cerebellar granule neurons was investigated by inducing apoptosis with calcium ionophore A23187 (CaI, 0.1µM). Imaging studies of gfp-tagged NGFI-B confirmed that mitochondrial translocation of NGFI-B occurred following treatment with CaI and was reduced by addition of 9-cis-retinoic acid (1µM), a retinoid X receptor (RXR) agonist that prevents dimerization of RXR and NGFI-B that is known to occur before translocation. Consequently, 9-cis-retinoic acid partly reduced cell death. To address the causality of NGFI-B in apoptosis further, knock-down by siRNA was performed and it removed 85% of the NGFI-B protein. This resulted in a complete inhibition of apoptosis after CaI exposure. Together these findings suggest that NGFI-B plays a role in controlling correct cerebellar development.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/farmacologia , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Movimento Celular/fisiologia , Citarabina/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/administração & dosagem , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Receptores X de Retinoides/metabolismo , Estatísticas não Paramétricas , Fatores de Tempo , Transfecção
9.
Neonatology ; 110(2): 83-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27070722

RESUMO

BACKGROUND: Molecular understanding of lung development is crucial for developing therapies and diagnostic tools. Animal models with altered thyroid hormone signaling provide mechanistic insight into thyroid-dependent neonatal lung disease. Repression of Klf2 (Krüppel-like factor 2), a suggested T3 target gene, is associated with disrupted lung development in mice. Klf2 is proposed to be specifically involved in type I pneumocyte differentiation. OBJECTIVES: To explore mechanisms of thyroid-dependent lung disease, we studied developing chicken fetuses with experimentally induced hypothyroidism. METHODS: Morphology and the expression of a panel of molecules linked to Klf2 were assessed using histology, immunohistochemistry, Western blot and qPCR. RESULTS: Methimazole injections at E14 hampered lung maturation. The effects of methimazole were evident in several tissue compartments, and impacted on both pneumocyte and vascular differentiation, suggesting cellular and molecular pleiotropy. CONCLUSIONS: Concomitant expression changes in a panel of selected microRNAs regulated by Klf2 suggest importance in lung development. These microRNAs may thus represent potential clinical targets and diagnostic and prognostic tools in thyroid-dependent lung disease.


Assuntos
Células Epiteliais Alveolares/patologia , Desenvolvimento Embrionário/efeitos dos fármacos , Hipotireoidismo/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Embrião de Galinha , Humanos , Hipotireoidismo/induzido quimicamente , Fatores de Transcrição Kruppel-Like/genética , Pulmão/embriologia , Metimazol , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Animais , Hormônios Tireóideos/metabolismo
10.
Eur J Med Chem ; 85: 391-8, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25108078

RESUMO

The synthesis, cytotoxicity, inhibition of tubulin polymerization and anti-angiogenic effects of 15 analogs of 2-methoxyestradiol (1) are reported. The biological studies revealed that the position of nitrogen atom in the heterocyclic ring is important for inhibition of both tubulin polymerization and angiogenesis. The most potent inhibitors were compounds 11f and 13e, with a 6-substituted isoquinoline ring in the 17-position of the steroid skeleton. Moreover, low estrogen activity was observed for the analogs tested at 10 µM concentrations.


Assuntos
Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/farmacologia , Desenho de Fármacos , Estradiol/análogos & derivados , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , 2-Metoxiestradiol , Inibidores da Angiogênese/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Estradiol/síntese química , Estradiol/química , Estradiol/farmacologia , Humanos , Concentração Inibidora 50 , Relação Estrutura-Atividade , Moduladores de Tubulina/química
11.
Neonatology ; 105(2): 112-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24335141

RESUMO

BACKGROUND: Antenatal corticosteroids and surfactant replacement therapy have dramatically reduced mortality caused by lung disease in premature babies. Knowledge about mechanisms regulating epithelial differentiation of the respiratory membrane is limited, as are effects of pharmacological interventions. The chicken fetus is a valuable model for exploring pharmacological actions on developing organs. However, more precise information about the timing of developmental events in the chicken lung is needed for human correlation. OBJECTIVES: Characterization of morphological development and protein expression in the respiratory membrane of the developing chicken lung to create a platform for pharmacological testing in a human context. METHODS: Fetal chicken lungs, embryonic days (E) 7-20, were characterized by morphology and protein expression of epithelial differentiation markers. This was compared with publications on the same processes during human lung development. RESULTS: The respiratory membranes of developing chicken and human lungs show basic similarities. In chicken, surfactant protein B is expressed in cuboidal type II epithelial cells from E17. Aquaporin 5 is expressed in the epithelium from E7 and selectively in type I pneumocytes from E17. The type I pneumocyte and endothelial marker, caveolin 1, is expressed in the endothelium from E7 to E20. CONCLUSION: Despite phylogenetic distance, central aspects of cellular development in the chicken and human lung are similar. The fetal chicken model has important additional advantages to mammalian models, including fetal independence and short incubation, and is thus well suited for in vivo studies of lung maturation relevant to human development.


Assuntos
Células Epiteliais Alveolares/fisiologia , Diferenciação Celular , Embrião de Galinha , Doenças do Prematuro/prevenção & controle , Pneumopatias/prevenção & controle , Pulmão/embriologia , Modelos Animais , Proteínas , Sequência de Aminoácidos , Animais , Galinhas/metabolismo , Sequência Conservada , Feminino , Feto/embriologia , Feto/metabolismo , Humanos , Doenças do Prematuro/metabolismo , Pulmão/metabolismo , Pneumopatias/congênito , Pneumopatias/metabolismo , Parto/fisiologia , Gravidez , Proteínas/isolamento & purificação , Proteínas/fisiologia , Mucosa Respiratória/fisiologia
12.
Int J Dev Neurosci ; 31(8): 762-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24091367

RESUMO

In mice, prenatal exposure to low doses of bisphenol A has been shown to affect neurogenesis and neuronal migration in cortex, resulting in disturbance of both neuronal positioning and the network formation between thalamus and cortex in the offspring brain. In the present study we investigated whether prenatal exposure to bisphenol A disturbs the neurodevelopment of the cerebellum. Two different model systems were used; offspring from two strains of mice from mothers receiving bisphenol A in the drinking water before mating, during gestation and lactation, and chicken embryos exposed to bisphenol A (in the egg) on embryonic day 16 for 24h before preparation of cerebellar granule cell cultures. In the cerebellum, tight regulation of the level of transcription factor Pax6 is critical for correct development of granule neurons. During the development, the Pax6 level in granule neurons is high when these cells are located in the external granule layer and during their migration to the internal granule layer, and it is then reduced. We report that bisphenol A induced an increase in the thickness of the external granule layer and also an increase in the total cerebellar Pax6 level in 11 days old mice offspring. In cultured chicken cerebellar granule neurons from bisphenol A injected eggs the Pax6 level was increased day 6 in vitro. Together, these findings indicate that bisphenol A may affect the granule neurons in the developing cerebellum and thereby may disturb the correct development of the cerebellum.


Assuntos
Compostos Benzidrílicos/toxicidade , Cerebelo , Estrogênios não Esteroides/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fatores Etários , Animais , Depressores do Sistema Nervoso Central/farmacologia , Cerebelo/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Embrião de Galinha , Galinhas , Relação Dose-Resposta a Droga , Comportamento de Ingestão de Líquido/efeitos dos fármacos , Etanol/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Neurônios/metabolismo , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
13.
Bioorg Med Chem ; 21(17): 5175-81, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23859779

RESUMO

The lipophilic, cell-penetrating zinc chelator N,N,N',N',-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN, 1) and the zinc chelating procaspase-activating compound PAC-1 (2) both have been reported to induce apoptosis in various cell types. The relationship between apoptosis-inducing ability and zinc affinity (Kd), have been investigated with two new model compounds, ZnA-DPA (3) and ZnA-Pyr (4), and compared to that of TPEN and PAC-1. The zinc-chelating o-hydroxybenzylidene moiety in PAC-1 was replaced with a 2,2'-dipicoylamine (DPA) unit (ZnA-DPA, 3) and a 4-pyridoxyl unit (ZnA-Pyr, 4), rendering an order of zinc affinity TPEN>ZnA-Pyr>ZnA-DPA>PAC-1. The compounds were incubated with the rat pheochromocytoma cell line PC12 and cell death was measured in combination with ZnSO4, a caspase-3 inhibitor, or a ROS scavenger. The model compounds ZnA-DPA (3) and ZnA-Pyr (4) induced cell death at higher concentrations as compared to PAC-1 and TPEN, reflecting differences in lipophilicity and thereby cell-penetrating ability. Addition of ZnSO4 reduced cell death induced by ZnA-Pyr (4) more than for ZnA-DPA (3). The ability to induce cell death could be reversed for all compounds using a caspase-3-inhibitor, and most so for TPEN (1) and ZnA-Pyr (4). Reactive oxygen species (ROS), as monitored using dihydro-rhodamine (DHR), were involved in cell death induced by all compounds. These results indicate that the Zn-chelators ZnA-DPA (3) and ZnA-Pyr (4) exercise their apoptosis-inducing effect by mechanisms similar to TPEN (1) and PAC-1 (2), by chelation of zinc, caspase-3 activation, and ROS production.


Assuntos
Quelantes/síntese química , Etilenodiaminas/química , Hidrazonas/química , Piperazinas/química , Zinco/química , Aminas/química , Animais , Apoptose/efeitos dos fármacos , Caspase 3/química , Caspase 3/metabolismo , Inibidores de Caspase/síntese química , Inibidores de Caspase/química , Inibidores de Caspase/toxicidade , Quelantes/química , Quelantes/toxicidade , Etilenodiaminas/toxicidade , Hidrazonas/toxicidade , Células PC12 , Ácidos Picolínicos/química , Piperazinas/toxicidade , Piridoxina/química , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/toxicidade
14.
Eur J Pharmacol ; 703(1-3): 25-32, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23416212

RESUMO

Cancer cells are more sensitive to oxidative stress due to higher levels of reactive oxygen species. Therefore, the ability of anti-cancer agent combretastatin A-4 (CA-4) and triazole analogues to induce reactive oxygen species may be important for selectivity against cancer cells. The purpose of the present study was to investigate the structural requirements for reactive oxygen species production by CA-4 and the triazole analogues Ana-2, Ana-3 and Ana-4. Ana-2 and Ana-3 mimic the cis configuration in CA-4; Ana-3 lacks the phenolic hydroxyl group, while Ana-4 mimics a trans configuration. The rat pheochromocytoma cancer cell line PC12 was used as model system. CA-4 and Ana-2 were highly toxic; Ana-3 was less toxic, whereas Ana-4 was non-toxic. The probe dihydroethidium detected reactive oxygen species production from CA-4, Ana-2, and Ana-3. CA-4 and Ana-2 also induced oxidation of the reactive oxygen species probe dihydrorhodamine and activation of caspase-3. Thus, the phenolic hydroxyl group in CA-4 and Ana-2 was necessary for dihydrorhodamine oxidation, caspase-3 activation, and increased cytotoxicity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bibenzilas/farmacologia , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Animais , Caspase 9/metabolismo , Morte Celular/efeitos dos fármacos , Células PC12 , Ratos
15.
Neurochem Int ; 61(1): 79-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525717

RESUMO

NGFI-B (NR4A1, Nur77 or TR3) together with Nurr1 (NR4A2) and NOR-1 (NR4A3) constitute the NR4A subgroup of orphan nuclear receptors. They play critical roles in proliferation, differentiation, survival and apoptosis in different cell types, including neurons, immature T-cells, and different cancer cells. As ligand-independent and constitutively active receptors, the diverse biological activities of NGFI-B, Nurr1 and NOR-1 depend on their levels of expression, post-translational modifications and subcellular localization. Nuclear localization of the NR4A proteins leads to transcriptional activity, whereas NGFI-B and recently also NOR-1 have been shown to induce apoptosis by a more direct mechanism when localized at mitochondria. In the present study we investigated mRNA expression and subcellular translocation of the NR4A proteins during glutamate excitotoxicity in rat cerebellar granule neurons. NGFI-B and Nurr1 mRNA, but not NOR-1 mRNA, were induced by treatments associated with calcium influx, although their regulation seemed to be different. NR4A(gfp) fusion proteins showed a predominant nuclear localization in untreated cells. After glutamate treatment NGFI-B(gfp) translocated to cytosol and mitochondria within a few hours, whereas Nurr1(gfp) translocation was delayed, and NOR-1(gfp) mainly stayed in the nucleus. Subcellular targeting of NGFI-B seems to be tightly regulated, as a single mutation of threonine 142 altered NGFI-B(gfp) localization. Differences in expression and subcellular translocation of NGFI-B, Nurr1, and NOR-1 may reflect different functions in neurons in glutamate excitotoxicity.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácido Glutâmico/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Animais , Sequência de Bases , Western Blotting , Cálcio/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/genética , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
16.
Biochem Biophys Res Commun ; 417(4): 1292-7, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22234305

RESUMO

NGFI-B is a nuclear receptor and immediate early gene that is upregulated in many different tumour cell lines. As it is involved in cell death and survival, it has been suggested as a target for anti-cancer drugs. The protein level of NGFI-B is important for its functions and may be regulated through induction or stabilization. NGFI-B protein stability was studied using the protein synthesis inhibitor cycloheximide in CV1 cells transiently transfected with NGFI-B. Inhibiting the proteasome with MG132 stabilized NGFI-B, indicating that the proteasome is responsible for break-down of NGFI-B, as it is for many nuclear receptors. In order to determine regions responsible for the break-down of NGFI-B two N-terminal regions with high PEST-scores were deleted. Deletion of amino acids 122-195 containing a PEST-sequence which includes an ERK2 phosphorylation target, gave a more stable protein. In addition, treatment of the cells with the ERK2 activator EGF increased the stability of wild type NGFI-B. We then tested whether a mutation at threonine 142 influenced the stability of NGFI-B. We found that the phosphorylation-mimicking mutant NGFI-B T142E had an increased stability, while the non-phosphorylable mutant (T142A) showed similar stability to the wild type. Thus, EGF-stimulation of cells may be a mechanism for priming the cells for effects of NGFI-B by increasing its stability.


Assuntos
Apoptose , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Fator de Crescimento Epidérmico/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Mutação , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fosforilação/genética , Estabilidade Proteica , Proteólise
17.
Toxicol Lett ; 209(1): 43-50, 2012 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-22143055

RESUMO

Epidemiological studies have associated indoor phthalate exposure with increased incidences and severity of asthma in children and adults, and inflammatory effects have been suggested as a possible mechanism. Recent studies report that phthalates may activate mitogen-activated protein (MAP) kinase p38 and various peroxisome proliferator-activated receptor (PPAR) isoforms. Here we confirm and extend these findings by investigating possible signalling pathways activated in the murine monocyte-macrophage cell line RAW264.7, using mono-2-ethylhexylphthalate (MEHP) as a model compound. MEHP exposure (0.3-1.0 mM) for 3h increased tumour necrosis factor (TNF)-α release and changed the cellular morphology into elongated spindle-like appearance, resembling more differentiated anti-inflammatory macrophages (M2). This was accompanied by increased expression of the macrophage differentiation marker CD163. Western analysis showed phosphorylation of p38 and Akt after 30 min exposure. Experiments using specific inhibitors suggested that MEHP-induced activation of both p38 and the phosphoinositide-3 (PI3) kinase/Akt pathway were involved in the release of TNF-α; whereas only PI3kinase seemed to be involved in differentiation. In contrast, inhibitors of PPARα and γ reduced differentiation, but did not affect TNF-α release. In conclusion, MEHP induced cytokine release and triggered differentiation of RAW264.7 cells, possibly into M2-like macrophages, but different signalling pathways appear to be involved in these responses.


Assuntos
Dietilexilftalato/análogos & derivados , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dietilexilftalato/farmacologia , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Proteína Oncogênica v-akt/metabolismo , PPAR alfa/antagonistas & inibidores , PPAR gama/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Brain Res ; 1418: 32-41, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21925649

RESUMO

Glucocorticoid (GC) treatment in premature infants may have detrimental effects on the immature brain. Here we show that GCs dexamethasone (Dex) and hydrocortisone (HC) reduce proliferation and induce differentiation of chicken embryo cerebellar neurons in vivo and in vitro. Granule neurons incorporating bromodeoxyuridine were reduced in the internal granular layer (IGL) after 24-h exposure to both substances on embryonic day 17, with Dex about 100-fold more potent than HC. The effects were blocked by GR antagonist RU 38486. Both GCs also increased the expression of neuronal differentiation markers microtubule-associated protein 2 (Map2) and neuronal nuclei protein (NeuN), measured by western blotting of whole cerebellar lysates and immunohistochemistry, respectively. Treatment of cerebellar granule neuron cultures with both GCs significantly reduced the percentage of proliferating-cell nuclear antigen (PCNA) positive neurons and increased NeuN positive neurons, with similar dose-response relationship as in vivo. The cytostatic agent cytosine arabinoside showed comparable effects both on proliferation and differentiation. In conclusion, the effects of Dex and HC on chicken cerebellar granule neuron proliferation are GR mediated and reflect their pharmacological potency. In addition, the effects on differentiation may be related to a cell cycle block per se, since cytosine arabinoside mimicked the effect of the GCs.


Assuntos
Proliferação de Células/efeitos dos fármacos , Cerebelo/citologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hidrocortisona/farmacologia , Neurônios/efeitos dos fármacos , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Antagonistas de Hormônios/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mifepristona/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo
19.
Biochem Biophys Res Commun ; 414(1): 90-5, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-21945431

RESUMO

Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptor X Retinoide alfa/metabolismo , Tretinoína/farmacologia , Alitretinoína , Animais , Células Cultivadas , Ácido Glutâmico/toxicidade , Ligantes , Neurônios/metabolismo , Ratos
20.
Biochem Biophys Res Commun ; 413(2): 364-9, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21893038

RESUMO

Caspase-3 is known as the key executioner caspase, activated in both the intrinsic and extrinsic apoptotic pathway, and an effector far downstream in the apoptotic cascade. Procaspase-activating compound-1 (PAC-1) and 1541 were launched as direct activators of procaspase-3 to caspase-3, and anticipated to be promising therapeutic agents for the treatment of cancer. PAC-1 has recently been evaluated in a phase I preclinical trial. However, little is known about the effect of these substances in cells. Activation of caspase-3 in whole cells may be more complicated than thought, as it is likely that this key protease is tightly regulated both in development and apoptosis. In this study, we investigated the effect of epidermal growth factor (EGF) on PAC-1-induced caspase-3 activity and cell death. We show that EGF can block caspase-3 activity generated by PAC-1, and protect both PC12 cells and primary cerebellar granule neurons against PAC-1-induced death. Similar results were obtained with 1541. Both substances reduced cellular p-ERK levels. Crosstalk between caspase-3 and growth factor signaling pathways may present a challenge for the use of such caspase-3-activating substances in cancer therapy, since aberrant growth factor signaling is frequently seen in malignant cells. This study adds important knowledge about cellular effects of procaspase-3 activators like PAC-1 and 1541. Effects mediated by these substances may also contribute to the understanding of caspase signaling in cells.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/biossíntese , Inibidores de Caspase , Ativadores de Enzimas/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Hidrazonas/farmacologia , Piperazinas/farmacologia , Animais , Embrião de Galinha , Ativação Enzimática/efeitos dos fármacos , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA