Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38730870

RESUMO

Electrochemical fluorination on nickel anodes, also known as the Simons' process, is an important fluorination method used on an industrial scale. Despite its success, the mechanism is still under debate. One of the proposed mechanisms involves higher valent nickel species formed on an anode acting as effective fluorinating agents. Here we report the first attempt to study fluorination by means of first principles investigation. We have identified a possible surface model from the simplest binary nickel fluoride (NiF2). A twice oxidized NiF2(F2) (001) surface exhibits higher valent nickel centers and a fluorination source that can be best characterized as an [F2]- like unit, readily available to aid fluorination. We have studied the adsorption of CH4 and the co-adsorption of CH4 and HF on this surface by means of periodic density functional theory. By the adsorption of CH4, we found two main outcomes on the surface. Unreactive physisorption of CH4 and dissociative chemisorption resulting in the formation of CH3F and HF. The co-adsorption with the HF gave rise to four main outcomes, namely the formation of CH3F, CH2F2, CH3 radical, and also physisorbed CH4.

2.
Chem Sci ; 15(12): 4504-4509, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516076

RESUMO

The Simons process is an electrochemical fluorination method to prepare organofluorine compounds. Despite the wide application, the underlying mechanism is still unclear. We report the investigation of the black film formed on the surface of the anodes in aHF by an in situ Ni K-edge X-ray absorption near edge structure (XANES) investigation. An electrochemical cell for in situ X-ray absorption spectroscopy (XAS) is presented.

3.
Chemistry ; 30(30): e202401120, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38512639

RESUMO

This study analyzes the samarium diiodide-promoted cyclizations of 5-arylpentan-2-ones to dearomatized bicyclic products utilizing density functional theory. The reaction involves a single electron transfer to the carbonyl group, which occurs synchronously with the rate determining cyclization event, and a second subsequent proton-coupled electron transfer. These redox reactions are accurately computed employing small core pseudo potentials explicitly involving all f-electrons of samarium. Comparison of the energies of the possible final products rules out thermodynamic control of the observed regio- and diastereoselectivities. Kinetic control via appropriate transition states is correctly predicted, but to obtain reasonable energy levels the influence of the co-solvent hexamethylphosphortriamide has to be estimated by using a correction term. The steric effect of the bulky samarium ligands is decisive for the observed stereoselectivity. Carbonyl groups in para-position of the aryl group change the regioselectivity of the cyclization and lead to spiro compounds. The computations suggest again kinetic control of this deviating outcome. However, the standard mechanism has to be modified and the involvement of a complex activated by two SmI2 moieties is proposed in which two electrons are transferred simultaneously to form the new C-C bond. Computation of model intermediates show the feasibility of this alternative+ mechanism.

4.
Angew Chem Int Ed Engl ; 63(14): e202317922, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366167

RESUMO

Carbon coating layers have been found to improve the catalytic performance of transition metals, which is usually explained as an outcome of electronic synergistic effect. Herein we reveal that the defective graphitic carbon, with a unique interlayer gap of 0.342 nm, can be a highly selective natural molecular sieve. It allows efficient diffusion of hydrogen molecules or radicals both along the in-plane and out-of-plane direction, but sterically hinders the diffusion of molecules with larger kinetic diameter (e.g., CO and O2) along the in-plane direction. As a result, poisonous species lager than 0.342 nm are sieved out, even when their adsorption on the metal is thermodynamically strong; at the same time, the interaction between H2 and the metal is not affected. This natural molecular sieve provides a very chance for constructing robust metal catalysts for hydrogen-relevant processes, which are more tolerant to chemical or electrochemical oxidation or CO-relevant poisoning.

5.
Biomacromolecules ; 25(1): 119-133, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38112688

RESUMO

The development of copolymerization techniques that can randomly incorporate biodegradable moieties into the hyperbranched polyglycerol backbone is an option to prevent its bioaccumulation in vivo. In this study, redox-responsive and biocompatible hyperbranched polyglycerol copolymers of glycidol and 1,4,5-oxadithiepan-2-one were synthesized with an adjustable molecular weight and a defined disulfide bond content through anionic and coordination-insertion ring-opening polymerization. A truly random incorporation of the monomers was achieved under both copolymerization mechanisms. The copolymers were further characterized in terms of their aggregation behavior in solution, degradability, in vitro cell viability, and blood compatibility for potential future biomedical applications. Transmission electron microscopy revealed that the copolymer assembled into nanoparticles with a size range of 20 nm. The copolymers underwent degradation when incubated with two different reducing agents, resulting in smaller fragments of the polymer with thiol end groups. The copolymers demonstrated good biocompatibility, making them suitable for further investigation in biomedical applications.


Assuntos
Dissulfetos , Polímeros , Polimerização , Polímeros/química , Oxirredução
6.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132983

RESUMO

Molecular switches based on functionalized graphene nanoribbons (GNRs) are of great interest in the development of nanoelectronics. In experiment, it was found that a significant difference in the conductance of an anthraquinone derivative can be achieved by altering the pH value of the environment. Building on this, in this work we investigate the underlying mechanism behind this effect and propose a general design principle for a pH based GNR-based switch. The electronic structure of the investigated systems is calculated using density functional theory and the transport properties at the quasi-stationary limit are described using nonequilibrium Green's function and the Landauer formalism. This approach enables the examination of the local and the global transport through the system. The electrons are shown to flow along the edges of the GNRs. The central carbonyl groups allow for tunable transport through control of the oxidation state via the pH environment. Finally, we also test different types of GNRs (zigzag vs. armchair) to determine which platform provides the best transport switchability.

7.
ACS Omega ; 8(37): 33920-33927, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744796

RESUMO

The state-of-the-art density functional theory approach was used to study the structural and electronic properties of pristine and defective MnPX3 monolayers as well as their activity toward water and hydrogen evolution reaction (HER) catalytic performance. The adsorption behavior of H2O on a pristine MnPX3 structure is of physisorption nature, whereas the adsorption energy is significantly increased for the defective structures. At the same time, the water dissociation process is more energetically favorable, and the reactivity of MnPX3 is determined by the vacancy configuration. Following Nørskov's approach, the HER catalytic performance is evaluated by calculating the hydrogen adsorption free energy on the respective MnPX3 surface. Our calculation results demonstrate that defective 2D MnPX3 with low coordinated P shows significantly higher HER performance compared to the pristine counterpart.

8.
J Comput Chem ; 44(25): 1986-1997, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37526139

RESUMO

The surfaces of waimirite ß- YF 3 have been studied for their fluorine and chlorine versus water affinity. Bonding patterns of HF, HCl, and H 2 O chemically adsorbed onto surfaces of (010), (100), (011), and (101) have been quantified by density functional theory applying energy decomposition analysis. We found that the adsorption of H 2 O is dominated by about 65% of electrostatics, which causes a low surface sensitivity and weak interactions. On the contrary, the adsorptions of HF and HCl are driven by strong hydrogen bonds resulting in a highly surface-dependent ratio of 30-60% electrostatic versus orbital contribution. Among the stoichiometric surfaces, the shortest and strongest hydrogen bonds and consequently most covalent bonding patterns are found within YF 3 · HCl. However, when including the preparation energy, each surface favors the adsorption of HF over HCl, which reproduces the higher affinity of yttrium towards fluoride over chloride, previously known for solutions, also for the solid state.

10.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049840

RESUMO

Weakly coordinating anions (WCAs) have attracted much attention in recent years due to their ability to stabilise highly reactive cations. It may well be argued, however, that a profound understanding of what truly defines a WCA is still lacking, and systematic studies to unravel counterion effects are scarce. In this work, we investigate a supramolecular pseudorotaxane formation reaction, subject to a selection of anions, ranging from strongly to weakly coordinating, which not only aids in fostering our knowledge about anion coordination properties, but also provides valuable theoretical insight into the nature of the mechanical bond. We employ state-of-the-art DFT-based methods and tools, combined with isothermal calorimetry and 1H NMR experiments, to compute anion-dependent Gibbs free association energies ΔGa, as well as to evaluate intermolecular interactions. We find correlations between ΔGa and the anions' solvation energies, which are exploited to calculate physico-chemical reaction parameters in the context of coordinating anions. Furthermore, we show that the binding situation within the (pseudo)rotaxanes can be mostly understood by straight-forward electrostatic considerations. However, quantum-chemical effects such as dispersion and charge-transfer interactions become more and more relevant when WCAs are employed.

11.
Nanomaterials (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677982

RESUMO

The structure and electronic properties of the molybdenum disulfide (MoS2) monolayer upon water cluster adsorption are studied using density functional theory and the optical properties are further analyzed with the Bethe-Salpeter equation (BSE). Our results reveal that the water clusters are electron acceptors, and the acceptor tendency tends to increase with the size of the water cluster. The electronic band gap of both pristine and defective MoS2 is rather insensitive to water cluster adsorbates, as all the clusters are weakly bound to the MoS2 surface. However, our calculations on the BSE level show that the adsorption of the water cluster can dramatically redshift the optical absorption for both pristine and defective MoS2 monolayers. The binding energy of the excitons of MoS2 is greatly enhanced with the increasing size of the water cluster and finally converges to a value of approximately 1.16 eV and 1.09 eV for the pristine and defective MoS2 monolayers, respectively. This illustrates that the presence of the water cluster could localize the excitons of MoS2, thereby greatly enhance the excitonic binding energy.

12.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557814

RESUMO

Samarium diiodide is a versatile single electron transfer (SET) agent with various applications in organic chemistry. Lewis structures regularly insinuate the existence of a ketyl radical when samarium diiodide binds a carbonyl group. The study presented here investigates this electron transfer by the means of computational chemistry. All electron CASPT2 calculations with the inclusion of scalar relativistic effects predict an endotherm electron transfer from samarium diiodide to acetone. Energies calculated with the PBE0-D3(BJ) functional and a small core pseudopotential are in good agreement with CASPT2. The calculations confirm the experimentally measured increase of the samarium diiodide reduction potential through the addition of hexamethylphosphoramide also known as HMPA.


Assuntos
Acetona , Elétrons , Ciclização , Transporte de Elétrons , Samário/química , Iodetos/química , Hempa/química
13.
Chemistry ; 28(72): e202203406, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36383093

RESUMO

A 3-amino-functionalized phosphabenzene (phosphinine) has been synthesized and structurally characterized. The pyramidalized nitrogen atom of the dimethylamino substituent indicates only a weak interaction between the lone pair of the nitrogen atom and the aromatic phosphorus heterocycle, resulting in somewhat basic character. It turned out that the amino group can indeed be protonated by HCl. In contrast to pyridines, however, the phosphabenzene-ammonium salt undergoes a selective ring contraction to form a hydroxylphospholene oxide in the presence of additional water. Based on deuterium labeling experiments and quantum chemical calculations, a rational mechanism for this hitherto unknown conversion is proposed.

14.
Materials (Basel) ; 15(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079428

RESUMO

The trifluorides of the two high field strength elements yttrium and holmium are studied by periodic density functional theory. As a lanthanide, holmium also belongs to the group of rare earth elements (REE). Due to their equivalent geochemical behavior, both elements form a geochemical twin pair and consequently, yttrium is generally associated with the REE as REE+Y. Interestingly, it has been found that DFT/DFT+U describe bulk HoF3 best, when the 4f-electrons are excluded from the valence region. An extensive surface stability analysis of YF3 (PBE) and HoF3 (PBE+Ud/3 eV/4f-in-core) using two-dimensional surface models (slabs) is performed. All seven low-lying Miller indices surfaces are considered with all possible stoichiometric or substoichiometric terminations with a maximal fluorine-deficit of two. This leads to a scope of 24 terminations per compound. The resulting Wulff plots consists of seven surfaces with 5-26% abundance for YF3 and six surfaces with 6-34% for HoF3. The stoichiometric (010) surface is dominating in both compounds. However, subtle differences have been found between these two geochemical twins.

15.
Chemphyschem ; 23(8): e202200024, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35224844

RESUMO

Catalysts are required to ensure electrochemical reduction of CO2 to fuels proceeds at industrially acceptable rates and yields. As such, highly active and selective catalysts must be developed. Herein, a density functional theory study of p-block element and noble metal doped graphene-based single-atom catalysts in two defect sites for the electrochemical reduction of CO2 to CO and HCOOH is systematically undertaken. It is found that on all of the systems considered, the thermodynamic product is HCOOH. Pb/C3 , Pb/N4 and Sn/C3 are identified as having the lowest overpotential for HCOOH production while Al/C3 , Al/N4 , Au/C3 and Ga/C3 are identified as having the potential to form higher order products due to the strength of binding of adsorbed HCOOH.

16.
Phys Chem Chem Phys ; 24(6): 3555-3567, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080559

RESUMO

The properties of molecules can be affected by the presence of a host environment. Even in inert rare gas matrices such effects are observable, as for instance in matrix isolation spectroscopy. In this work we study the trifluoride anion in cryogenic argon environments. To investigate the structure and vibrational properties of the guest-host systems, a potential energy surface of compound F-3-argon structures is determined from ab initio calculations with the CCSD(T)-F12b approach. Argon environments are probed with minima hopping optimizations of extended trifluoride-argon clusters. The vibrations of F-3 within the optimized environments are examined with anharmonic vibrational analyses. Among the three identified structural surroundings for the trifluoride, two are characterized by relatively favorable guest-host and host-host interactions as well as vibrational zero-point energies. A striking dependence of the trifluoride properties on the particular argon environment reveals the delicate influence of the host atoms on the guest molecule. Very good agreement with measured data suggests that in experiment F-3 occupies a double-vacancy site.

17.
Inorg Chem ; 60(24): 19145-19151, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34878258

RESUMO

Anionic lithium-containing species were predicted to impact ionic liquid-based electrochemical applications but have hitherto never been isolated from ionic liquid systems. Here, we report the first representatives of this class of compounds, ino-chloridolithates, comprising [LiCl2]- and [Li2Cl3]- polyanions from ionothermal reactions. Such compounds are obtained at moderate temperatures with imidazolium-based ionic liquids and LiCl. The addition of an auxiliary ammonium salt enhances the lattice energy to yield an ammonium lithate in good yields, which enables extensive investigations including solid-state nuclear magnetic resonance, infrared, and Raman spectroscopy. The structural motifs of ino-lithates are related to ino-silicates, as 1D-extended anionic substructures are formed. Despite this analogy, according to density functional theory calculations with periodic boundary conditions, no evidence of covalent bonding in the anionic moieties is found-indicating packing effects to be the main cause for the formation. Based on an in-depth analysis of the different synthetic parameters, this class of compounds is discussed as an intermediate in ionic liquid applications and could serve as a model system for electrochemical lithium-based systems.

18.
Phys Chem Chem Phys ; 24(1): 98-111, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889923

RESUMO

Single-atom catalysts are promising candidates for many industrial reactions. However, making true single-atom catalysts is an experimental dilemma, due to the difficulty of keeping dopant single atoms stable at temperature and under pressure. This difficulty can lead to clustering of the metal dopant atoms in defect sites. However, the electronic and geometric structure of sub-nanoscale clusters in single-atom defects has not yet been explored. Furthermore, recent studies have proven sub-nanoscale clusters of dopants in single-atom defect sites can be equally good or better catalysts than their single-atom counterparts. Here, a comprehensive DFT study is undertaken to determine the geometric and electronic structure effects that influence clustering of noble and p-block dopants in C3- and N4-defect sites in graphene-based systems. We find that the defect site is the primary driver in determining clustering dynamics in these systems.

19.
ACS Omega ; 6(41): 27387-27395, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693159

RESUMO

We carried out first-principles calculations to simulate Ag2ZnSnS4 and Ag2CdSnS4 and calculated enthalpies of different plausible structural models (kesterite-type, stannite-type, wurtzkesterite-type, wurtzstannite-type, and GeSb-type) to identify low- and high-pressure phases. For Ag2ZnSnS4, we predict the following transition: kesterite-type→[8.2GPa]→ GeSb-type. At the transition pressure, the electronic structure changes from semiconducting to metallic. For Ag2CdSnS4, we cannot decide which of the experimentally observed structures (kesterite-type or wurtzkesterite-type) is the ground-state structure because their energy difference is too small. At 4.7 GPa, however, we predict a transition to the GeSb-type structure with metallic character for both structures. Regarding the sensitivity of the material to disorder, a major drawback for solar cell applications, Ag2CdSnS4 behaves similar to Cu2ZnSnS4, both showing a high tendency to cationic disorder. In contrast, the disordered structures in Ag2ZnSnS4 are much higher in energy, and therefore, the material is less affected by disorder.

20.
J Am Chem Soc ; 143(43): 18010-18019, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34689551

RESUMO

Combining the abundance and inexpensiveness of their constituent elements with their atomic dispersion, atomically dispersed Fe-N-C catalysts represent the most promising alternative to precious-metal-based materials in proton exchange membrane (PEM) fuel cells. Due to the high temperatures involved in their synthesis and the sensitivity of Fe ions toward carbothermal reduction, current synthetic methods are intrinsically limited in type and amount of the desired, catalytically active Fe-N4 sites, and high active site densities have been out of reach (dilemma of Fe-N-C catalysts). We herein identify a paradigm change in the synthesis of Fe-N-C catalysts arising from the developments of other M-N-C single-atom catalysts. Supported by DFT calculations we propose fundamental principles for the synthesis of M-N-C materials. We further exploit the proposed principles in a novel synthetic strategy to surpass the dilemma of Fe-N-C catalysts. The selective formation of tetrapyrrolic Zn-N4 sites in a tailor-made Zn-N-C material is utilized as an active-site imprint for the preparation of a corresponding Fe-N-C catalyst. By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe-N-C catalyst, with a high loading of atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe-N4 sites. The density of tetrapyrrolic Fe-N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe-N-C fuel cell catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA