Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 165: 106016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38838515

RESUMO

OBJECTIVES: To evaluate in vivo 1) the bioavailability of trans-resveratrol when administered through sublingual capsules; 2) the effect of resveratrol on the protein composition of the acquired enamel pellicle (AEP). DESIGN: Ten volunteers received a sublingual capsule containing 50 mg of trans-resveratrol. Unstimulated saliva was then collected after 0, 30, 60, and 120 min and AEP was collected after 120 min following administration of the capsule. In the next week, the volunteers received a placebo sublingual capsule, and saliva and AEP were collected again. Saliva samples were analyzed for free trans-resveratrol using high-performance liquid chromatopgraphy (HPLC), and AEP samples were subjected to proteomic analysis (nLC-ESI-MS/MS). RESULTS: Trans-resveratrol was detected in saliva at all the time points evaluated, with the peak at 30 min. A total of 242 proteins were identified in both groups. Ninety-six proteins were increased and 23 proteins were decreased in the Resveratrol group. Among the up-regulated proteins, isoforms of cystatins, PRPs, Mucin-7, Histatin-1, Lactotrasnferrin and Lysozyme-C were increased and the isoforms of Protein S100, Neutrophil defensins, Albumin, PRPs, and, Statherin were decreased in Resveratrol group. CONCLUSION: The sublingual capsule is effective at increasing the bioavailability of trans-resveratrol in saliva. Several proteins involved in important processes to maintain systemic and oral health homeostasis were identified. These proteins differently expressed due to the presence of trans-resveratrol deserve attention for future studies, since they have important functions, mainly related to antimicrobial action.


Assuntos
Cápsulas , Película Dentária , Resveratrol , Saliva , Humanos , Resveratrol/farmacologia , Resveratrol/farmacocinética , Resveratrol/administração & dosagem , Saliva/metabolismo , Saliva/química , Masculino , Adulto , Película Dentária/metabolismo , Película Dentária/química , Cromatografia Líquida de Alta Pressão , Feminino , Disponibilidade Biológica , Estilbenos/farmacocinética , Estilbenos/farmacologia , Estilbenos/administração & dosagem , Proteômica , Espectrometria de Massas em Tandem , Proteínas e Peptídeos Salivares/metabolismo
2.
Molecules ; 28(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836734

RESUMO

Amyloid aggregates arise from either the partial or complete loss of the native protein structure or the inability of proteins to attain their native conformation. These aggregates have been linked to several diseases, including Alzheimer's, Parkinson's, and lysozyme amyloidosis. A comprehensive dataset was recently reported, demonstrating the critical role of the protein's surrounding environment in amyloid formation. In this study, we investigated the formation of lysozyme amyloid fibrils induced by sodium dodecyl sulfate (SDS) and the effect of solvents in the medium. Experimental data obtained through fluorescence spectroscopy revealed a notable lag phase in amyloid formation when acetone solution was present. This finding suggested that the presence of acetone in the reaction medium created an unfavorable microenvironment for amyloid fibril formation and impeded the organization of the denatured protein into the fibril form. The in silico data provided insights into the molecular mechanism of the interaction between acetone molecules and the lysozyme protofibril, once acetone presented the best experimental results. It was observed that the lysozyme protofibril became highly unstable in the presence of acetone, leading to the complete loss of its ß-sheet conformation and resulting in an open structure. Furthermore, the solvation layer of the protofibril in acetone solution was significantly reduced compared to that in other solvents, resulting in fewer hydrogen bonds. Consequently, the presence of acetone facilitated the exposure of the hydrophobic portion of the protofibril, precluding the amyloid fibril formation. In summary, our study underscores the pivotal role the surrounding environment plays in influencing amyloid formation.


Assuntos
Amiloide , Muramidase , Dodecilsulfato de Sódio/química , Amiloide/química , Muramidase/química , Solventes/química , Acetona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA