Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 141: 103726, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096697

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease and a peculiar eukaryote with unique biological characteristics. DNA damage can block RNA polymerase, activating transcription-coupled nucleotide excision repair (TC-NER), a DNA repair pathway specialized in lesions that compromise transcription. If transcriptional stress is unresolved, arrested RNA polymerase can activate programmed cell death. Nonetheless, how this parasite modulates these processes is unknown. Here, we demonstrate that T. cruzi cell death after UV irradiation, a genotoxic agent that generates lesions resolved by TC-NER, depends on active transcription and is signaled mainly by an apoptotic-like pathway. Pre-treated parasites with α-amanitin, a selective RNA polymerase II inhibitor, become resistant to such cell death. Similarly, the gamma pre-irradiated cells are more resistant to UV when the transcription processes are absent. The Cockayne Syndrome B protein (CSB) recognizes blocked RNA polymerase and can initiate TC-NER. Curiously, CSB overexpression increases parasites' cell death shortly after UV exposure. On the other hand, at the same time after irradiation, the single-knockout CSB cells show resistance to the same treatment. UV-induced fast death is signalized by the exposition of phosphatidylserine to the outer layer of the membrane, indicating a cell death mainly by an apoptotic-like pathway. Furthermore, such death is suppressed in WT parasites pre-treated with inhibitors of ataxia telangiectasia and Rad3-related (ATR), a key DDR kinase. Signaling for UV radiation death may be related to R-loops since the overexpression of genes associated with the resolution of these structures suppress it. Together, results suggest that transcription blockage triggered by UV radiation activates an ATR-dependent apoptosis-like mechanism in T. cruzi, with the participation of CSB protein in this process.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Dano ao DNA , Reparo do DNA , Estruturas R-Loop , Transcrição Gênica , Trypanosoma cruzi , Raios Ultravioleta , Trypanosoma cruzi/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Proteínas de Protozoários/metabolismo , DNA Helicases/metabolismo , DNA Helicases/genética , Morte Celular , Apoptose , Humanos
2.
Nat Commun ; 15(1): 5789, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987539

RESUMO

The outcome of CRISPR-Cas-mediated genome modifications is dependent on DNA double-strand break (DSB) processing and repair pathway choice. Homology-directed repair (HDR) of protein-blocked DSBs requires DNA end resection that is initiated by the endonuclease activity of the MRE11 complex. Using reconstituted reactions, we show that Cas9 breaks are unexpectedly not directly resectable by the MRE11 complex. In contrast, breaks catalyzed by Cas12a are readily processed. Cas9, unlike Cas12a, bridges the broken ends, preventing DSB detection and processing by MRE11. We demonstrate that Cas9 must be dislocated after DNA cleavage to allow DNA end resection and repair. Using single molecule and bulk biochemical assays, we next find that the HLTF translocase directly removes Cas9 from broken ends, which allows DSB processing by DNA end resection or non-homologous end-joining machineries. Mechanistically, the activity of HLTF requires its HIRAN domain and the release of the 3'-end generated by the cleavage of the non-target DNA strand by the Cas9 RuvC domain. Consequently, HLTF removes the H840A but not the D10A Cas9 nickase. The removal of Cas9 H840A by HLTF explains the different cellular impact of the two Cas9 nickase variants in human cells, with potential implications for gene editing.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , DNA , Humanos , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , DNA/metabolismo , DNA/genética , Proteína Homóloga a MRE11/metabolismo , Proteína Homóloga a MRE11/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Edição de Genes , Endonucleases/metabolismo , Endonucleases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Reparo do DNA por Junção de Extremidades , Clivagem do DNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Science ; 385(6710): eado3867, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38900911

RESUMO

Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.


Assuntos
Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Replicação do DNA , Rad51 Recombinase , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Sistemas CRISPR-Cas , Reparo do DNA , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
4.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266640

RESUMO

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga
5.
DNA Repair, v. 141, 103726, jul. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5454

RESUMO

Trypanosoma cruzi is the etiological agent of Chagas disease and a peculiar eukaryote with unique biological characteristics. DNA damage can block RNA polymerase, activating transcription-coupled nucleotide excision repair (TC-NER), a DNA repair pathway specialized in lesions that compromise transcription. If transcriptional stress is unresolved, arrested RNA polymerase can activate programmed cell death. Nonetheless, how this parasite modulates these processes is unknown. Here, we demonstrate that T. cruzi cell death after UV irradiation, a genotoxic agent that generates lesions resolved by TC-NER, depends on active transcription and is signaled mainly by an apoptotic-like pathway. Pre-treated parasites with α-amanitin, a selective RNA polymerase II inhibitor, become resistant to such cell death. Similarly, the gamma pre-irradiated cells are more resistant to UV when the transcription processes are absent. The Cockayne Syndrome B protein (CSB) recognizes blocked RNA polymerase and can initiate TC-NER. Curiously, CSB overexpression increases parasites’ cell death shortly after UV exposure. On the other hand, at the same time after irradiation, the single-knockout CSB cells show resistance to the same treatment. UV-induced fast death is signalized by the exposition of phosphatidylserine to the outer layer of the membrane, indicating a cell death mainly by an apoptotic-like pathway. Furthermore, such death is suppressed in WT parasites pre-treated with inhibitors of ataxia telangiectasia and Rad3-related (ATR), a key DDR kinase. Signaling for UV radiation death may be related to R-loops since the overexpression of genes associated with the resolution of these structures suppress it. Together, results suggest that transcription blockage triggered by UV radiation activates an ATR-dependent apoptosis-like mechanism in T. cruzi, with the participation of CSB protein in this process.

6.
Science ; 378(6623): 983-989, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454826

RESUMO

Neurons harbor high levels of single-strand DNA breaks (SSBs) that are targeted to neuronal enhancers, but the source of this endogenous damage remains unclear. Using two systems of postmitotic lineage specification-induced pluripotent stem cell-derived neurons and transdifferentiated macrophages-we show that thymidine DNA glycosylase (TDG)-driven excision of methylcytosines oxidized with ten-eleven translocation enzymes (TET) is a source of SSBs. Although macrophage differentiation favors short-patch base excision repair to fill in single-nucleotide gaps, neurons also frequently use the long-patch subpathway. Disrupting this gap-filling process using anti-neoplastic cytosine analogs triggers a DNA damage response and neuronal cell death, which is dependent on TDG. Thus, TET-mediated active DNA demethylation promotes endogenous DNA damage, a process that normally safeguards cell identity but can also provoke neurotoxicity after anticancer treatments.


Assuntos
Quebras de DNA de Cadeia Simples , Desmetilação do DNA , Reparo do DNA , Elementos Facilitadores Genéticos , Células-Tronco Pluripotentes Induzidas , Neurônios , Timina DNA Glicosilase , Diferenciação Celular , Neurônios/enzimologia , 5-Metilcitosina/metabolismo , Humanos , Transdiferenciação Celular
7.
Mol Cell ; 82(19): 3538-3552.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36075220

RESUMO

DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.


Assuntos
DNA Cruciforme , Nylons , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Humanos , Conformação de Ácido Nucleico
8.
Elife ; 112022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575473

RESUMO

DNA double-strand break (DSB) repair by homologous recombination is confined to the S and G2 phases of the cell cycle partly due to 53BP1 antagonizing DNA end resection in G1 phase and non-cycling quiescent (G0) cells where DSBs are predominately repaired by non-homologous end joining (NHEJ). Unexpectedly, we uncovered extensive MRE11- and CtIP-dependent DNA end resection at DSBs in G0 murine and human cells. A whole genome CRISPR/Cas9 screen revealed the DNA-dependent kinase (DNA-PK) complex as a key factor in promoting DNA end resection in G0 cells. In agreement, depletion of FBXL12, which promotes ubiquitylation and removal of the KU70/KU80 subunits of DNA-PK from DSBs, promotes even more extensive resection in G0 cells. In contrast, a requirement for DNA-PK in promoting DNA end resection in proliferating cells at the G1 or G2 phase of the cell cycle was not observed. Our findings establish that DNA-PK uniquely promotes DNA end resection in G0, but not in G1 or G2 phase cells, which has important implications for DNA DSB repair in quiescent cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas F-Box , Animais , DNA/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteína Quinase Ativada por DNA/genética , Proteínas F-Box/genética , Fase G1/genética , Humanos , Camundongos
9.
Genes Dev ; 35(19-20): 1356-1367, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34503990

RESUMO

Double-strand break (DSB) repair choice is greatly influenced by the initial processing of DNA ends. 53BP1 limits the formation of recombinogenic single-strand DNA (ssDNA) in BRCA1-deficient cells, leading to defects in homologous recombination (HR). However, the exact mechanisms by which 53BP1 inhibits DSB resection remain unclear. Previous studies have identified two potential pathways: protection against DNA2/EXO1 exonucleases presumably through the Shieldin (SHLD) complex binding to ssDNA, and localized DNA synthesis through the CTC1-STN1-TEN1 (CST) and DNA polymerase α (Polα) to counteract resection. Using a combinatorial approach of END-seq, SAR-seq, and RPA ChIP-seq, we directly assessed the extent of resection, DNA synthesis, and ssDNA, respectively, at restriction enzyme-induced DSBs. We show that, in the presence of 53BP1, Polα-dependent DNA synthesis reduces the fraction of resected DSBs and the resection lengths in G0/G1, supporting a previous model that fill-in synthesis can limit the extent of resection. However, in the absence of 53BP1, Polα activity is sustained on ssDNA yet does not substantially counter resection. In contrast, EXO1 nuclease activity is essential for hyperresection in the absence of 53BP1. Thus, Polα-mediated fill-in partially limits resection in the presence of 53BP1 but cannot counter extensive hyperresection due to the loss of 53BP1 exonuclease blockade. These data provide the first nucleotide mapping of DNA synthesis at resected DSBs and provide insight into the relationship between fill-in polymerases and resection exonucleases.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Reparo do DNA/genética , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Recombinação Homóloga/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
10.
Nat Commun ; 12(1): 4856, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381034

RESUMO

Totipotent cells have the ability to generate embryonic and extra-embryonic tissues. Interestingly, a rare population of cells with totipotent-like potential, known as 2 cell (2C)-like cells, has been identified within ESC cultures. They arise from ESC and display similar features to those found in the 2C embryo. However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that the CCCTC-binding factor (CTCF) is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by the transcription factor DUX is associated with DNA damage at a subset of CTCF binding sites. Depletion of CTCF in ESC efficiently promotes spontaneous and asynchronous conversion to a 2C-like state and is reversible upon restoration of CTCF levels. This phenotypic reprogramming is specific to pluripotent cells as neural progenitor cells do not show 2C-like conversion upon CTCF-depletion. Furthermore, we show that transcriptional activation of the ZSCAN4 cluster is necessary for successful 2C-like reprogramming. In summary, we reveal an unexpected relationship between CTCF and 2C-like reprogramming.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Reprogramação Celular , Células-Tronco Totipotentes/citologia , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Morte Celular , Dano ao DNA , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Células-Tronco Totipotentes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Methods Mol Biol ; 2281: 209-215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847960

RESUMO

Fluorescent in situ hybridization coupled with immunofluorescence (FISH/IF) is an assay that has been widely used to study DNA-protein interactions. The technique is based on the use of a fluorescent nucleic acid probe and fluorescent antibodies to reveal the localization of a DNA sequence and a specific protein in the cell. The interaction can be inferred by the quantification of the co-localization between the protein and the DNA. Here, we describe a detailed FISH/IF methodology that our group used to study RPA-telomere interaction in the pathogenic protozoa parasite Trypanosoma cruzi.


Assuntos
Proteína de Replicação A/metabolismo , Telômero/metabolismo , Trypanosoma cruzi/metabolismo , Imunofluorescência , Hibridização in Situ Fluorescente , Sondas de Ácido Nucleico/química , Proteínas de Protozoários/metabolismo , Telômero/química , Trypanosoma cruzi/genética
12.
Nature ; 593(7859): 440-444, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767446

RESUMO

Defects in DNA repair frequently lead to neurodevelopmental and neurodegenerative diseases, underscoring the particular importance of DNA repair in long-lived post-mitotic neurons1,2. The cellular genome is subjected to a constant barrage of endogenous DNA damage, but surprisingly little is known about the identity of the lesion(s) that accumulate in neurons and whether they accrue throughout the genome or at specific loci. Here we show that post-mitotic neurons accumulate unexpectedly high levels of DNA single-strand breaks (SSBs) at specific sites within the genome. Genome-wide mapping reveals that SSBs are located within enhancers at or near CpG dinucleotides and sites of DNA demethylation. These SSBs are repaired by PARP1 and XRCC1-dependent mechanisms. Notably, deficiencies in XRCC1-dependent short-patch repair increase DNA repair synthesis at neuronal enhancers, whereas defects in long-patch repair reduce synthesis. The high levels of SSB repair in neuronal enhancers are therefore likely to be sustained by both short-patch and long-patch processes. These data provide the first evidence of site- and cell-type-specific SSB repair, revealing unexpected levels of localized and continuous DNA breakage in neurons. In addition, they suggest an explanation for the neurodegenerative phenotypes that occur in patients with defective SSB repair.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , Elementos Facilitadores Genéticos/genética , Neurônios/metabolismo , 5-Metilcitosina/metabolismo , Linhagem Celular , DNA/biossíntese , Replicação do DNA , Humanos , Masculino , Metilação , Poli(ADP-Ribose) Polimerases/metabolismo , Análise de Sequência de DNA
13.
FEBS Lett ; 594(10): 1596-1607, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32052428

RESUMO

Replication protein A (RPA), a heterotrimeric complex, is the major single-stranded DNA binding protein in eukaryotes. Recently, we characterized RPA from Trypanosoma cruzi, showing that it is involved in DNA replication and DNA damage response in this organism. Better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms was observed in TcRPA-2 subunit heterozygous knockout cells, suggesting that RPA is involved in this process. Here, we show that RPA cellular localization changes during the T. cruzi life cycle, with RPA being detected only in the cytoplasm of the metacyclic and bloodstream trypomastigotes. We also identify a nuclear export signal (NES) in the trypanosomatid RPA-2 subunit. Mutations in the negatively charged residues of RPA-2 NES impair the differentiation process, suggesting that RPA exportation affects parasite differentiation into infective forms.


Assuntos
Núcleo Celular/metabolismo , Estágios do Ciclo de Vida , Morfogênese , Proteína de Replicação A/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Doença de Chagas/sangue , Doença de Chagas/parasitologia , Simulação por Computador , Citoplasma/metabolismo , Morfogênese/genética , Sinais de Exportação Nuclear/genética , Sinais de Exportação Nuclear/fisiologia , Proteína de Replicação A/genética , Trypanosoma cruzi/citologia
14.
Mol Cell ; 77(1): 26-38.e7, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31653568

RESUMO

53BP1 activity drives genome instability and lethality in BRCA1-deficient mice by inhibiting homologous recombination (HR). The anti-recombinogenic functions of 53BP1 require phosphorylation-dependent interactions with PTIP and RIF1/shieldin effector complexes. While RIF1/shieldin blocks 5'-3' nucleolytic processing of DNA ends, it remains unclear how PTIP antagonizes HR. Here, we show that mutation of the PTIP interaction site in 53BP1 (S25A) allows sufficient DNA2-dependent end resection to rescue the lethality of BRCA1Δ11 mice, despite increasing RIF1 "end-blocking" at DNA damage sites. However, double-mutant cells fail to complete HR, as excessive shieldin activity also inhibits RNF168-mediated loading of PALB2/RAD51. As a result, BRCA1Δ1153BP1S25A mice exhibit hallmark features of HR insufficiency, including premature aging and hypersensitivity to PARPi. Disruption of shieldin or forced targeting of PALB2 to ssDNA in BRCA1D1153BP1S25A cells restores RNF168 recruitment, RAD51 nucleofilament formation, and PARPi resistance. Our study therefore reveals a critical function of shieldin post-resection that limits the loading of RAD51.


Assuntos
Recombinação Homóloga/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , Proteína BRCA1/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Recombinação Homóloga/efeitos dos fármacos , Camundongos , Mutação/efeitos dos fármacos , Mutação/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/genética , Ubiquitina-Proteína Ligases/genética
15.
Front Cell Dev Biol ; 8: 602956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33415107

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom. Trypanosoma brucei is a divergent pathogenic protozoan parasite that causes human African trypanosomiasis (HAT), a neglected disease that can be fatal when left untreated. The proper signaling and accuracy of DNA repair is fundamental to T. brucei not only to ensure parasite survival after genotoxic stress but also because DSBs are involved in the process of generating antigenic variations used by this parasite to evade the host immune system. DSBs trigger a strong DNA damage response and efficient repair process in T. brucei, but it is unclear how these processes are coordinated. Here, by knocking down ATR in T. brucei using two different approaches (conditional RNAi and an ATR inhibitor), we show that ATR is required to mediate intra-S and partial G1/S checkpoint responses. ATR is also involved in replication fork stalling, is critical for H2A histone phosphorylation in a small group of cells and is necessary for the recruitment and upregulation of the HR-mediated DNA repair protein RAD51 after ionizing radiation (IR) induces DSBs. In summary, this work shows that apical ATR kinase plays a central role in signal transduction and is critical for orchestrating the DNA damage response in T. brucei.

16.
Front Cell Dev Biol, v. 8, 602956, dez. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3440

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom. Trypanosoma brucei is a divergent pathogenic protozoan parasite that causes human African trypanosomiasis (HAT), a neglected disease that can be fatal when left untreated. The proper signaling and accuracy of DNA repair is fundamental to T. brucei not only to ensure parasite survival after genotoxic stress but also because DSBs are involved in the process of generating antigenic variations used by this parasite to evade the host immune system. DSBs trigger a strong DNA damage response and efficient repair process in T. brucei, but it is unclear how these processes are coordinated. Here, by knocking down ATR in T. brucei using two different approaches (conditional RNAi and an ATR inhibitor), we show that ATR is required to mediate intra-S and partial G1/S checkpoint responses. ATR is also involved in replication fork stalling, is critical for H2A histone phosphorylation in a small group of cells and is necessary for the recruitment and upregulation of the HR-mediated DNA repair protein RAD51 after ionizing radiation (IR) induces DSBs. In summary, this work shows that apical ATR kinase plays a central role in signal transduction and is critical for orchestrating the DNA damage response in T. brucei.

17.
FEBS Lett, fev. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2945

RESUMO

Replication Protein A (RPA), a heterotrimeric complex, is the major single-stranded DNA-binding protein in eukaryotes. Recently, we characterized RPA from Trypanosoma cruzi, showing that it is involved in DNA replication and DNA damage response in this organism. Better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms was observed in TcRPA-2 subunit heterozygous knockout cells, suggesting that RPA is involved in this process. Here, we show that RPA cellular localization changes during the T. cruzi life cycle, with RPA being detected only in the cytoplasm of the metacyclic and bloodstream trypomastigotes. We also identify a Nuclear Export Signal (NES) in the trypanosomatid RPA-2 subunit. Mutations in the negatively charged residues of RPA-2 NES impair the differentiation process, suggesting that RPA exportation affects parasite differentiation into infective forms.

18.
FEBS Lett. ; 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17449

RESUMO

Replication Protein A (RPA), a heterotrimeric complex, is the major single-stranded DNA-binding protein in eukaryotes. Recently, we characterized RPA from Trypanosoma cruzi, showing that it is involved in DNA replication and DNA damage response in this organism. Better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms was observed in TcRPA-2 subunit heterozygous knockout cells, suggesting that RPA is involved in this process. Here, we show that RPA cellular localization changes during the T. cruzi life cycle, with RPA being detected only in the cytoplasm of the metacyclic and bloodstream trypomastigotes. We also identify a Nuclear Export Signal (NES) in the trypanosomatid RPA-2 subunit. Mutations in the negatively charged residues of RPA-2 NES impair the differentiation process, suggesting that RPA exportation affects parasite differentiation into infective forms.

19.
Sci Rep ; 8(1): 5405, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599445

RESUMO

One of the most important mechanisms for repairing double-strand breaks (DSBs) in model eukaryotes is homologous recombination (HR). Although the genes involved in HR have been found in Trypanosoma brucei and studies have identified some of the proteins that participate in this HR pathway, the recruitment kinetics of the HR machinery onto DNA during DSB repair have not been clearly elucidated in this organism. Using immunofluorescence, protein DNA-bound assays, and DNA content analysis, we established the recruitment kinetics of the HR pathway in response to the DSBs generated by ionizing radiation (IR) in procyclic forms of T. brucei. These kinetics involved the phosphorylation of histone H2A and the sequential recruitment of the essential HR players Exo1, RPA, and Rad51. The process of DSB repair took approximately 5.5 hours. We found that DSBs led to a decline in the G2/M phase after IR treatment, concomitant with cell cycle arrest in the G1/S phase. This finding suggests that HR repairs DSBs faster than the other possible DSB repair processes that act during the G1/S transition. Taken together, these data suggest that the interplay between DNA damage detection and HR machinery recruitment is finely coordinated, allowing these parasites to repair DNA rapidly after DSBs during the late S/G2 proficient phases.


Assuntos
Recombinação Homóloga/efeitos da radiação , Radiação Ionizante , Trypanosoma brucei brucei/metabolismo , Fragmentação do DNA/efeitos da radiação , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Histonas/metabolismo , Fosforilação/efeitos da radiação , Proteínas de Protozoários/metabolismo , Reparo de DNA por Recombinação/efeitos da radiação , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos da radiação , Trypanosoma brucei brucei/efeitos da radiação
20.
PLoS Negl Trop Dis ; 12(1): e0006170, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29320490

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.


Assuntos
Compostos de Amônio/metabolismo , Glutamato-Amônia Ligase/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Trifosfato de Adenosina/metabolismo , Deleção de Genes , Teste de Complementação Genética , Ácido Glutâmico/metabolismo , Interações Hospedeiro-Patógeno , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA