Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 201: 107996, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783231

RESUMO

Host-associated microbial communities are an important determinant of individual fitness and have recently been highlighted as one of the factors influencing the success of invasive species. Invasive hosts introduce their microbes into the new environment, and then both the host and its associated microbes enter into a series of interactions with the native macroscopic and microscopic biota. As these processes are largely unexplored, we aimed to compare the exoskeletal microbial communities of co-occurring and phylogenetically related crayfish: the native narrow-clawed crayfish Pontastacus leptodactylus and the invasive signal crayfish Pacifastacus leniusculus from the recently invaded Korana River, Croatia. The results of high-throughput 16S rRNA sequencing showed that the exoskeletal microbiome of both species is very diverse, significantly influenced by the local environment and dominated by low abundance bacterial families from the phylum Proteobacteria. Furthermore, the exoskeletal microbiomes of the crayfish species differed significantly in the composition and abundance of Amplicon Sequence Variants (ASVs), suggesting that they are to some extent shaped by species-specific intrinsic factors, despite sharing a common habitat. However, over 95% of the bacterial genera associated with the exoskeleton were detected in the exoskeleton samples of both native and invasive crayfish. We paid particular attention to two known crayfish pathogens, Aphanomyces astaci and Saprolegnia parasitica, and find that both species carry low amounts of both pathogens. On the side, we find that a non-standard ddPCR protocol outperforms standard qPCR test for A. astaci under low concentration conditions. Taken together, our results indicate the possibility of bidirectional mixing and homogenisation of exoskeleton microbiome. As such, they can serve as a baseline in future detangling of the processes that act together to shape the microbiomes of co-occuring native and invasive congeners during biological invasions.


Assuntos
Aphanomyces , Exoesqueleto Energizado , Microbiota , Humanos , Animais , Astacoidea/microbiologia , Espécies Introduzidas , RNA Ribossômico 16S/genética , Aphanomyces/genética
2.
Environ Sci Pollut Res Int ; 30(34): 82601-82612, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37328727

RESUMO

Since aquatic microbial communities promptly respond to environmental changes, it is now evident that they can complement traditional taxa such as fish, macroinvertebrates and algae as bioindicators of water quality. The aim of this study was to correlate the physico-chemical parameters of water with the microbial community structure and the occurrence of putative bioindicator taxa. Thirty-five water samples were collected throughout Croatia and their physico-chemical parameters, including the concentration of trace elements using the high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and the composition of the microbial communities by high-throughput sequencing of the 16S rRNA marker gene, were analysed in parallel. Partial least squares regression (PLS-R) modelling revealed that a number of microbial taxa were positively correlated with some of the water parameters. For example, some taxa from the phylum Proteobacteria were positively correlated with the ion content of the water (e.g. Erythrobacter, Rhodobacteraceae, Alteromonadaceae), while some Firmicutes taxa, such as the well-known faecal indicators Enterococcus and Clostridium, were correlated with nutrient content (ammonium and total phosphorus). Among the trace elements, uranium was positively correlated with a highest number of microbial taxa. The results obtained will aid in development of protocols for eDNA-based biological assessment of water quality.


Assuntos
Microbiota , Oligoelementos , Animais , Biomarcadores Ambientais , Oligoelementos/análise , Croácia , RNA Ribossômico 16S/genética , Bactérias/genética , Água Doce
3.
Sci Rep ; 12(1): 16646, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198674

RESUMO

Saprolegnia parasitica causes saprolegniosis, a disease responsible for significant economic losses in aquaculture and declines of fish populations in the wild, but the knowledge of its distribution and prevalence in the environment is limited. We developed a fast, sensitive and specific S. parasitica droplet digital PCR (ddPCR) assay and demonstrated its applicability for the detection and quantification of the pathogen in environmental samples: swab DNA collected from the host (trout skin, surface of eggs) and environmental DNA extracted from water. The developed assay was used to assess how abiotic (i.e. physico-chemical parameters of the water) and biotic (health status of the host) factors influence the S. parasitica load in the environment. The pathogen load in water samples was positively correlated with some site-specific abiotic parameters such as electrical conductivity (EC) and calcium, while fluorides were negatively correlated, suggesting that physico-chemical parameters are important for determining S. parasitica load in natural waters. Furthermore, skin swabs of injured trout had significantly higher pathogen load than swabs collected from healthy fish, confirming that S. parasitica is a widespread opportunistic pathogen. Our results provide new insights into various environmental factors that influence the distribution and abundance of S. parasitica.


Assuntos
DNA Ambiental , Doenças dos Peixes , Saprolegnia , Animais , Aquicultura , Cálcio , Doenças dos Peixes/epidemiologia , Fluoretos , Saprolegnia/genética , Truta/genética , Água
4.
Microorganisms ; 10(3)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35336096

RESUMO

Oomycete pathogens in freshwaters, such as Saprolegnia parasitica and Aphanomyces astaci, are responsible for fish/crayfish population declines in the wild and disease outbreaks in aquaculture. Although the formation of infectious zoospores in the laboratory can be triggered by washing their mycelium with natural water samples, the physico-chemical properties of the water that might promote sporulation are still unexplored. We washed the mycelia of A. astaci and S. parasitica with a range of natural water samples and observed differences in sporulation efficiency. The results of Partial Least Squares Regression (PLS-R) multivariate analysis showed that SAC (spectral absorption coefficient measured at 254 nm), DOC (dissolved organic carbon), ammonium-N and fluoride had the strongest positive effect on sporulation of S. parasitica, while sporulation of A. astaci was not significantly correlated with any of the analyzed parameters. In agreement with this, the addition of environmentally relevant concentrations of humic acid, an important contributor to SAC and DOC, to the water induced sporulation of S. parasitica but not of A. astaci. Overall, our results point to the differences in ecological requirements of these pathogens, but also present a starting point for optimizing laboratory protocols for the induction of sporulation.

5.
Plants (Basel) ; 10(8)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34451721

RESUMO

Saprolegnia parasitica, the causative agent of saprolegniosis in fish, and Aphanomyces astaci, the causative agent of crayfish plague, are oomycete pathogens that cause economic losses in aquaculture. Since toxic chemicals are currently used to control them, we aimed to investigate their inhibition by essential oils of sage, rosemary, and bay laurel as environmentally acceptable alternatives. Gas Chromatography-Mass Spectrometry (GC-MS) analysis showed that the essential oils tested were rich in bioactive volatiles, mainly monoterpenes. Mycelium and zoospores of A. astaci were more sensitive compared to those of S. parasitica, where only sage essential oil completely inhibited mycelial growth. EC50 values (i.e., concentrations of samples at which the growth was inhibited by 50%) for mycelial growth determined by the radial growth inhibition assay were 0.031-0.098 µL/mL for A. astaci and 0.040 µL/mL for S. parasitica. EC50 values determined by the zoospore germination inhibition assay were 0.007-0.049 µL/mL for A. astaci and 0.012-0.063 µL/mL for S. parasitica. The observed inhibition, most pronounced for sage essential oil, could be partly due to dominant constituents of the essential oils, such as camphor, but more likely resulted from a synergistic effect of multiple compounds. Our results may serve as a basis for in vivo experiments and the development of environmentally friendly methods to control oomycete pathogens in aquaculture.

6.
J Invertebr Pathol ; 169: 107274, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682798

RESUMO

The pathogenic oomycete Aphanomyces astaci, transmitted mainly by invasive North American crayfish, causes the crayfish plague, a disease mostly lethal for native European crayfish. Due to its decimating effects on native crayfish populations in the last century, A. astaci has been listed among the 100 worst invasive species. Importantly, detecting the pathogen in endangered native crayfish populations before a disease outbreak would provide a starting point in the development of effective control measures. However, current A. astaci-detection protocols either rely on degradation-prone eDNA isolated from large volumes of water or, if focused on individual animals, include killing the crayfish. We developed a non-destructive method that detects A. astaci DNA in the microbial biofilm associated with the cuticle of individual crayfish, without the need for destructive sampling. Efficiency of the new method was confirmed by PCR and qPCR and the obtained results were congruent with the traditional destructive sampling method. Additionally, we demonstrated the applicability of the method for A. astaci monitoring in natural populations. We propose that the new method should be used in future monitoring of A. astaci presence in endangered European native crayfish individuals as an alternative to eDNA-based monitoring.


Assuntos
Aphanomyces/isolamento & purificação , Astacoidea/parasitologia , Conservação dos Recursos Naturais/métodos , Interações Hospedeiro-Parasita , Parasitologia/métodos , Animais , DNA de Protozoário/análise , Espécies Introduzidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA