Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Respir Crit Care Med ; 210(5): 629-638, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526489

RESUMO

Rationale: Blood flow rate affects mixed venous oxygenation (SvO2) during venovenous extracorporeal membrane oxygenation (ECMO), with possible effects on the pulmonary circulation and the right heart function. Objectives: To describe the physiologic effects of different levels of SvO2 obtained by changing ECMO blood flow in patients with severe acute respiratory distress syndrome receiving ECMO and controlled mechanical ventilation. Methods: Low (SvO2 target, 70-75%), intermediate (SvO2 target, 75-80%), and high (SvO2 target, >80%) ECMO blood flows were applied for 30 minutes in random order in 20 patients. Mechanical ventilation settings were left unchanged. The hemodynamic and pulmonary effects were assessed with pulmonary artery catheter and electrical impedance tomography. Measurements and Main Results: Cardiac output decreased from low to intermediate and to high blood flow/SvO2 (9.2 [6.2-10.9] vs. 8.3 [5.9-9.8] vs. 7.9 [6.5-9.1] L/min; P = 0.014), as well as mean pulmonary artery pressure (34 ± 6 vs. 31 ± 6 vs. 30 ± 5 mm Hg; P < 0.001) and right ventricular stroke work index (14.2 ± 4.4 vs. 12.2 ± 3.6 vs. 11.4 ± 3.2 g × m/beat/m2; P = 0.002). Cardiac output was inversely correlated with mixed venous and arterial Po2 values (R2 = 0.257; P = 0.031; and R2 = 0.324; P = 0.05). Pulmonary artery pressure was correlated with decreasing mixed venous Po2 (R2 = 0.29; P < 0.001) and with increasing cardiac output (R2 = 0.378; P < 0.007). Measures of [Formula: see text]/[Formula: see text] mismatch did not differ between the three steps. Conclusions: In patients with severe acute respiratory distress syndrome, increased ECMO blood flow rate resulting in higher SvO2 decreases pulmonary artery pressure, cardiac output, and right heart workload.


Assuntos
Oxigenação por Membrana Extracorpórea , Síndrome do Desconforto Respiratório , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Débito Cardíaco/fisiologia , Hemodinâmica/fisiologia , Respiração Artificial/métodos , Idoso , Circulação Pulmonar/fisiologia
2.
Ann Intensive Care ; 14(1): 1, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180544

RESUMO

BACKGROUND: Various Positive End-Expiratory Pressure (PEEP) titration strategies have been proposed to optimize ventilation in patients with acute respiratory distress syndrome (ARDS). We aimed to compare PEEP titration strategies based on electrical impedance tomography (EIT) to methods derived from respiratory system mechanics with or without esophageal pressure measurements, in terms of PEEP levels and association with recruitability. METHODS: Nineteen patients with ARDS were enrolled. Recruitability was assessed by the estimated Recruitment-to-Inflation ratio (R/Iest) between PEEP 15 and 5 cmH2O. Then, a decremental PEEP trial from PEEP 20 to 5 cmH2O was performed. PEEP levels determined by the following strategies were studied: (1) plateau pressure 28-30 cmH2O (Express), (2) minimal positive expiratory transpulmonary pressure (Positive PLe), (3) center of ventilation closest to 0.5 (CoV) and (4) intersection of the EIT-based overdistension and lung collapse curves (Crossing Point). In addition, the PEEP levels determined by the Crossing Point strategy were assessed using different PEEP ranges during the decremental PEEP trial. RESULTS: Express and CoV strategies led to higher PEEP levels than the Positive PLe and Crossing Point ones (17 [14-17], 20 [17-20], 8 [5-11], 10 [8-11] respectively, p < 0.001). For each strategy, there was no significant association between the optimal PEEP level and R/Iest (Crossing Point: r2 = 0.073, p = 0.263; CoV: r2 < 0.001, p = 0.941; Express: r2 < 0.001, p = 0.920; Positive PLe: r2 = 0.037, p = 0.461). The PEEP level obtained with the Crossing Point strategy was impacted by the PEEP range used during the decremental PEEP trial. CONCLUSIONS: CoV and Express strategies led to higher PEEP levels than the Crossing Point and Positive PLe strategies. Optimal PEEP levels proposed by these four methods were not associated with recruitability. Recruitability should be specifically assessed in ARDS patients to optimize PEEP titration.

3.
Crit Care ; 27(1): 343, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667379

RESUMO

BACKGROUND: Respiratory mechanics is a key element to monitor mechanically ventilated patients and guide ventilator settings. Besides the usual basic assessments, some more complex explorations may allow to better characterize patients' respiratory mechanics and individualize ventilation strategies. These advanced respiratory mechanics assessments including esophageal pressure measurements and complete airway closure detection may be particularly relevant in critically ill obese patients. This study aimed to comprehensively assess respiratory mechanics in obese and non-obese ICU patients with or without ARDS and evaluate the contribution of advanced respiratory mechanics assessments compared to basic assessments in these patients. METHODS: All intubated patients admitted in two ICUs for any cause were prospectively included. Gas exchange and respiratory mechanics including esophageal pressure and end-expiratory lung volume (EELV) measurements and low-flow insufflation to detect complete airway closure were assessed in standardized conditions (tidal volume of 6 mL kg-1 predicted body weight (PBW), positive end-expiratory pressure (PEEP) of 5 cmH2O) within 24 h after intubation. RESULTS: Among the 149 analyzed patients, 52 (34.9%) were obese and 90 (60.4%) had ARDS (65.4% and 57.8% of obese and non-obese patients, respectively, p = 0.385). A complete airway closure was found in 23.5% of the patients. It was more frequent in obese than in non-obese patients (40.4% vs 14.4%, p < 0.001) and in ARDS than in non-ARDS patients (30% vs. 13.6%, p = 0.029). Respiratory system and lung compliances and EELV/PBW were similarly decreased in obese patients without ARDS and obese or non-obese patients with ARDS. Chest wall compliance was not impacted by obesity or ARDS, but end-expiratory esophageal pressure was higher in obese than in non-obese patients. Chest wall contribution to respiratory system compliance differed widely between patients but was not predictable by their general characteristics. CONCLUSIONS: Most respiratory mechanics features are similar in obese non-ARDS and non-obese ARDS patients, but end-expiratory esophageal pressure is higher in obese patients. A complete airway closure can be found in around 25% of critically ill patients ventilated with a PEEP of 5 cmH2O. Advanced explorations may allow to better characterize individual respiratory mechanics and adjust ventilation strategies in some patients. Trial registration NCT03420417 ClinicalTrials.gov (February 5, 2018).


Assuntos
Estado Terminal , Síndrome do Desconforto Respiratório , Humanos , Peso Corporal , Obesidade/complicações , Respiração Artificial , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória
4.
Am J Respir Crit Care Med ; 208(1): 25-38, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097986

RESUMO

Rationale: Defining lung recruitability is needed for safe positive end-expiratory pressure (PEEP) selection in mechanically ventilated patients. However, there is no simple bedside method including both assessment of recruitability and risks of overdistension as well as personalized PEEP titration. Objectives: To describe the range of recruitability using electrical impedance tomography (EIT), effects of PEEP on recruitability, respiratory mechanics and gas exchange, and a method to select optimal EIT-based PEEP. Methods: This is the analysis of patients with coronavirus disease (COVID-19) from an ongoing multicenter prospective physiological study including patients with moderate-severe acute respiratory distress syndrome of different causes. EIT, ventilator data, hemodynamics, and arterial blood gases were obtained during PEEP titration maneuvers. EIT-based optimal PEEP was defined as the crossing point of the overdistension and collapse curves during a decremental PEEP trial. Recruitability was defined as the amount of modifiable collapse when increasing PEEP from 6 to 24 cm H2O (ΔCollapse24-6). Patients were classified as low, medium, or high recruiters on the basis of tertiles of ΔCollapse24-6. Measurements and Main Results: In 108 patients with COVID-19, recruitability varied from 0.3% to 66.9% and was unrelated to acute respiratory distress syndrome severity. Median EIT-based PEEP differed between groups: 10 versus 13.5 versus 15.5 cm H2O for low versus medium versus high recruitability (P < 0.05). This approach assigned a different PEEP level from the highest compliance approach in 81% of patients. The protocol was well tolerated; in four patients, the PEEP level did not reach 24 cm H2O because of hemodynamic instability. Conclusions: Recruitability varies widely among patients with COVID-19. EIT allows personalizing PEEP setting as a compromise between recruitability and overdistension. Clinical trial registered with www.clinicaltrials.gov (NCT04460859).


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Impedância Elétrica , Estudos Prospectivos , Pulmão/diagnóstico por imagem , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Tomografia Computadorizada por Raios X/métodos , Tomografia/métodos
5.
Crit Care ; 26(1): 211, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818077

RESUMO

PURPOSE: In the acute respiratory distress syndrome (ARDS), decreasing Ventilation-Perfusion [Formula: see text] mismatch might enhance lung protection. We investigated the regional effects of higher Positive End Expiratory Pressure (PEEP) on [Formula: see text] mismatch and their correlation with recruitability. We aimed to verify whether PEEP improves regional [Formula: see text] mismatch, and to study the underlying mechanisms. METHODS: In fifteen patients with moderate and severe ARDS, two PEEP levels (5 and 15 cmH2O) were applied in random order. [Formula: see text] mismatch was assessed by Electrical Impedance Tomography at each PEEP. Percentage of ventilation and perfusion reaching different ranges of [Formula: see text] ratios were analyzed in 3 gravitational lung regions, leading to precise assessment of their distribution throughout different [Formula: see text] mismatch compartments. Recruitability between the two PEEP levels was measured by the recruitment-to-inflation ratio method. RESULTS: In the non-dependent region, at higher PEEP, ventilation reaching the normal [Formula: see text] compartment (p = 0.018) increased, while it decreased in the high [Formula: see text] one (p = 0.023). In the middle region, at PEEP 15 cmH2O, ventilation and perfusion to the low [Formula: see text] compartment decreased (p = 0.006 and p = 0.011) and perfusion to normal [Formula: see text] increased (p = 0.003). In the dependent lung, the percentage of blood flowing through the non-ventilated compartment decreased (p = 0.041). Regional [Formula: see text] mismatch improvement was correlated to lung recruitability and changes in regional tidal volume. CONCLUSIONS: In patients with ARDS, higher PEEP optimizes the distribution of both ventilation (in the non-dependent areas) and perfusion (in the middle and dependent lung). Bedside measure of recruitability is associated with improved [Formula: see text] mismatch.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Pulmão , Perfusão , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Fenômenos Fisiológicos Respiratórios
7.
Crit Care Med ; 50(5): 723-732, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200194

RESUMO

OBJECTIVES: Prone positioning allows to improve oxygenation and decrease mortality rate in COVID-19-associated acute respiratory distress syndrome (C-ARDS). However, the mechanisms leading to these effects are not fully understood. The aim of this study is to assess the physiologic effects of pronation by the means of CT scan and electrical impedance tomography (EIT). DESIGN: Experimental, physiologic study. SETTING: Patients were enrolled from October 2020 to March 2021 in an Italian dedicated COVID-19 ICU. PATIENTS: Twenty-one intubated patients with moderate or severe C-ARDS. INTERVENTIONS: First, patients were transported to the CT scan facility, and image acquisition was performed in prone, then supine position. Back to the ICU, gas exchange, respiratory mechanics, and ventilation and perfusion EIT-based analysis were provided toward the end of two 30 minutes steps (e.g., in supine, then prone position). MEASUREMENTS AND MAIN RESULTS: Prone position induced recruitment in the dorsal part of the lungs (12.5% ± 8.0%; p < 0.001 from baseline) and derecruitment in the ventral regions (-6.9% ± 5.2%; p < 0.001). These changes led to a global increase in recruitment (6.0% ± 6.7%; p < 0.001). Respiratory system compliance did not change with prone position (45 ± 15 vs 45 ± 18 mL/cm H2O in supine and prone position, respectively; p = 0.957) suggesting a decrease in atelectrauma. This hypothesis was supported by the decrease of a time-impedance curve concavity index designed as a surrogate for atelectrauma (1.41 ± 0.16 vs 1.30 ± 0.16; p = 0.001). Dead space measured by EIT was reduced in the ventral regions of the lungs, and the dead-space/shunt ratio decreased significantly (5.1 [2.3-23.4] vs 4.3 [0.7-6.8]; p = 0.035), showing an improvement in ventilation-perfusion matching. CONCLUSIONS: Several changes are associated with prone position in C-ARDS: increased lung recruitment, decreased atelectrauma, and improved ventilation-perfusion matching. These physiologic effects may be associated with more protective ventilation.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Impedância Elétrica , Humanos , Pulmão/diagnóstico por imagem , Perfusão , Respiração com Pressão Positiva/métodos , Decúbito Ventral , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia , Tomografia Computadorizada por Raios X
8.
Anesthesiology ; 135(6): 1066-1075, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644374

RESUMO

BACKGROUND: Experimental and pilot clinical data suggest that spontaneously breathing patients with sepsis and septic shock may present increased respiratory drive and effort, even in the absence of pulmonary infection. The study hypothesis was that respiratory drive and effort may be increased in septic patients and correlated with extrapulmonary determinant and that high-flow nasal cannula may modulate drive and effort. METHODS: Twenty-five nonintubated patients with extrapulmonary sepsis or septic shock were enrolled. Each patient underwent three consecutive steps: low-flow oxygen at baseline, high-flow nasal cannula, and then low-flow oxygen again. Arterial blood gases, esophageal pressure, and electrical impedance tomography data were recorded toward the end of each step. Respiratory effort was measured as the negative swing of esophageal pressure (ΔPes); drive was quantified as the change in esophageal pressure during the first 500 ms from start of inspiration (P0.5). Dynamic lung compliance was calculated as the tidal volume measured by electrical impedance tomography, divided by ΔPes. The results are presented as medians [25th to 75th percentile]. RESULTS: Thirteen patients (52%) were in septic shock. The Sequential Organ Failure Assessment score was 5 [4 to 9]. During low-flow oxygen at baseline, respiratory drive and effort were elevated and significantly correlated with arterial lactate (r = 0.46, P = 0.034) and inversely with dynamic lung compliance (r = -0.735, P < 0.001). Noninvasive support by high-flow nasal cannula induced a significant decrease of respiratory drive (P0.5: 6.0 [4.4 to 9.0] vs. 4.3 [3.5 to 6.6] vs. 6.6 [4.9 to 10.7] cm H2O, P < 0.001) and effort (ΔPes: 8.0 [6.0 to 11.5] vs. 5.5 [4.5 to 8.0] vs. 7.5 [6.0 to 12.6] cm H2O, P < 0.001). Oxygenation and arterial carbon dioxide levels remained stable during all study phases. CONCLUSIONS: Patients with sepsis and septic shock of extrapulmonary origin present elevated respiratory drive and effort, which can be effectively reduced by high-flow nasal cannula.


Assuntos
Cânula , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Taxa Respiratória/fisiologia , Choque Séptico/fisiopatologia , Choque Séptico/terapia , Idoso , Estudos de Coortes , Impedância Elétrica/uso terapêutico , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Oxigenoterapia/instrumentação , Oxigenoterapia/métodos , Sepse/fisiopatologia , Sepse/terapia
9.
Crit Care ; 25(1): 248, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266454

RESUMO

BACKGROUND: Differences in physiology of ARDS have been described between COVID-19 and non-COVID-19 patients. This study aimed to compare initial values and longitudinal changes in respiratory system compliance (CRS), oxygenation parameters and ventilatory ratio (VR) in patients with COVID-19 and non-COVID-19 pulmonary ARDS matched on oxygenation. METHODS: 135 patients with COVID-19 ARDS from two centers were included in a physiological study; 767 non-COVID-19 ARDS from a clinical trial were used for the purpose of at least 1:2 matching. A propensity-matching was based on age, severity score, oxygenation, positive end-expiratory pressure (PEEP) and pulmonary cause of ARDS and allowed to include 112 COVID-19 and 198 non-COVID pulmonary ARDS. RESULTS: The two groups were similar on initial oxygenation. COVID-19 patients had a higher body mass index, higher CRS at day 1 (median [IQR], 35 [28-44] vs 32 [26-38] ml cmH2O-1, p = 0.037). At day 1, CRS was correlated with oxygenation only in non-COVID-19 patients; 61.6% and 68.2% of COVID-19 and non-COVID-19 pulmonary ARDS were still ventilated at day 7 (p = 0.241). Oxygenation became lower in COVID-19 than in non-COVID-19 patients at days 3 and 7, while CRS became similar. VR was lower at day 1 in COVID-19 than in non-COVID-19 patients but increased from day 1 to 7 only in COVID-19 patients. VR was higher at days 1, 3 and 7 in the COVID-19 patients ventilated using heat and moisture exchangers compared to heated humidifiers. After adjustment on PaO2/FiO2, PEEP and humidification device, CRS and VR were found not different between COVID-19 and non-COVID-19 patients at day 7. Day-28 mortality did not differ between COVID-19 and non-COVID-19 patients (25.9% and 23.7%, respectively, p = 0.666). CONCLUSIONS: For a similar initial oxygenation, COVID-19 ARDS initially differs from classical ARDS by a higher CRS, dissociated from oxygenation. CRS become similar for patients remaining on mechanical ventilation during the first week of evolution, but oxygenation becomes lower in COVID-19 patients. TRIAL REGISTRATION: clinicaltrials.gov NCT04385004.


Assuntos
COVID-19/terapia , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/terapia , Idoso , Gasometria , Índice de Massa Corporal , COVID-19/fisiopatologia , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Testes de Função Respiratória , Mecânica Respiratória/fisiologia , SARS-CoV-2
10.
Ann Intensive Care ; 10(1): 55, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399901

RESUMO

BACKGROUND: A large proportion of patients with a SARS-Cov-2-associated respiratory failure develop an acute respiratory distress syndrome (ARDS). It has been recently suggested that SARS-Cov-2-associated ARDS may differ from usual non-SARS-Cov-2-associated ARDS by higher respiratory system compliance (CRS), lower potential for recruitment with positive end-expiratory pressure (PEEP) contrasting with severe shunt fraction. The purpose of the study was to systematically assess respiratory mechanics and recruitability in SARS-Cov-2-associated ARDS. METHODS: Gas exchanges, CRS and hemodynamics were assessed at 2 levels of PEEP (15 cmH2O and 5 cmH2O) within 36 h (day1) and from 4 to 6 days (day 5) after intubation. The recruited volume was computed as the difference between the volume expired from PEEP 15 to 5 cmH2O and the volume predicted by compliance at PEEP 5 cmH2O (or above airway opening pressure). The recruitment-to-inflation (R/I) ratio (i.e. the ratio between the recruited lung compliance and CRS at PEEP 5 cmH2O) was used to assess lung recruitability. A R/I ratio value higher than or equal to 0.5 was used to define highly recruitable patients. RESULTS: The R/I ratio was calculated in 25 of the 26 enrolled patients at day 1 and in 15 patients at day 5. At day 1, 16 (64%) were considered as highly recruitable (R/I ratio median [interquartile range] 0.7 [0.55-0.94]) and 9 (36%) were considered as poorly recruitable (R/I ratio 0.41 [0.31-0.48]). The PaO2/FiO2 ratio at PEEP 15 cmH2O was higher compared to PEEP 5 cmH2O only in highly recruitable patients (173 [139-236] vs 135 [89-167] mmHg; p < 0.01). Neither PaO2/FiO2 or CRS measured at PEEP 15 cmH2O or at PEEP 5 cmH2O nor changes in PaO2/FiO2 or CRS in response to PEEP changes allowed to identify highly or poorly recruitable patients. CONCLUSION: In this series of 25 patients with SARS-Cov-2 associated ARDS, 64% were considered as highly recruitable and only 36% as poorly recruitable based on the R/I ratio performed on the day of intubation. This observation suggests that a systematic R/I ratio assessment may help to guide initial PEEP titration to limit harmful effect of unnecessary high PEEP in the context of Covid-19 crisis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA