Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 7(1): 97, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465541

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are multipotent progenitor cells used in several cell therapies. MSCs are characterized by the expression of CD73, CD90, and CD105 cell markers, and the absence of CD34, CD45, CD11a, CD19, and HLA-DR cell markers. CD90 is a glycoprotein present in the MSC membranes and also in adult cells and cancer stem cells. The role of CD90 in MSCs remains unknown. Here, we sought to analyse the role that CD90 plays in the characteristic properties of in vitro expanded human MSCs. METHODS: We investigated the function of CD90 with regard to morphology, proliferation rate, suppression of T-cell proliferation, and osteogenic/adipogenic differentiation of MSCs by reducing the expression of this marker using CD90-target small hairpin RNA lentiviral vectors. RESULTS: The present study shows that a reduction in CD90 expression enhances the osteogenic and adipogenic differentiation of MSCs in vitro and, unexpectedly, causes a decrease in CD44 and CD166 expression. CONCLUSION: Our study suggests that CD90 controls the differentiation of MSCs by acting as an obstacle in the pathway of differentiation commitment. This may be overcome in the presence of the correct differentiation stimuli, supporting the idea that CD90 level manipulation may lead to more efficient differentiation rates in vitro.


Assuntos
Adipócitos/metabolismo , Inativação Gênica , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Antígenos Thy-1/genética , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular , Proliferação de Células , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Imunofenotipagem , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/metabolismo , Antígenos Thy-1/metabolismo
2.
Int J Nanomedicine ; 9: 337-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24531365

RESUMO

Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 10(5) cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.


Assuntos
Rastreamento de Células/métodos , Sangue Fetal/citologia , Nanopartículas de Magnetita , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Movimento Celular , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Feminino , Corantes Fluorescentes , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Masculino , Transplante de Células-Tronco Mesenquimais , Nanomedicina , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Gravidez , Ratos , Ratos Wistar , Rodaminas , Substância Negra/citologia
3.
Int J Nanomedicine ; 6: 591-603, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674016

RESUMO

Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays. The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment. We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles. In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival. Two clinical studies showed that MHT could be applied safely and with few side effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT. Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas.


Assuntos
Glioma/terapia , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/uso terapêutico , Animais , Humanos
4.
Cell Reprogram ; 12(4): 391-403, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20698778

RESUMO

Adherent umbilical cord blood stromal cells (AUCBSCs) are multipotent cells with differentiation capacities. Therefore, these cells have been investigated for their potential in cell-based therapies. Quantum Dots (QDs) are an alternative to organic dyes and fluorescent proteins because of their long-term photostability. In this study we determined the effects of the cell passage on AUCBSCs morphology, phenotype, and differentiation potential. QDs labeled AUCBSCs in the fourth cell passage were differentiated in the three mesodermal lineages and were evaluated using cytochemical methods and transmission electron microscopy (TEM). Gene and protein expression of the AUCBSCs immunophenotypic markers were also evaluated in the labeled cells by real-time quantitative PCR and flow cytometry. In this study we were able to define the best cellular passage to work with AUCBSCs and we also demonstrated that the use of fluorescent QDs can be an efficient nano-biotechnological tool in differentiation studies because labeled cells do not have their characteristics compromised.


Assuntos
Adesão Celular , Diferenciação Celular , Proliferação de Células , Sangue Fetal/citologia , Nanotecnologia , Células Estromais/citologia , Contagem de Células , Linhagem da Célula , Células Cultivadas , Sangue Fetal/metabolismo , Citometria de Fluxo , Humanos , Imunofenotipagem , Células Estromais/metabolismo , Células Estromais/ultraestrutura
5.
Int J Nanomedicine ; 5: 203-11, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20463936

RESUMO

The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro).


Assuntos
Meios de Contraste/farmacocinética , Dextranos/farmacocinética , Óxido Ferroso-Férrico/farmacocinética , Animais , Magnetismo , Nanopartículas de Magnetita , Masculino , Taxa de Depuração Metabólica , Especificidade de Órgãos , Ratos , Ratos Wistar , Distribuição Tecidual
6.
Int. j. nanomed. (Online) ; 5: 203-211, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063573

RESUMO

The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administeredin biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the eliminationand biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysisof the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carriedout in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique forthe SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro).


Assuntos
Ratos , Espectroscopia de Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/análise , Nanopartículas/uso terapêutico , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/toxicidade , Materiais Biocompatíveis/uso terapêutico , Técnicas Imunológicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA