Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930292

RESUMO

Rice husk ash (RHA) is agricultural waste with high silica content that has exhibited proven technical feasibility as a pozzolanic material since the 1970s. Notwithstanding, its use in mortars and concrete is limited by the standards currently utilized in some countries where RHA production is high and the aforementioned pozzolanic material is not standardized. This is the case in Spain, one of the main rice producers in Europe. Nowadays, the high pressure placed on the Portland cement production sector to reduce its energy use and CO2 emissions has given rise to a keen interest in mineral admixtures for cement manufacturing. In this research, we intended to establish the contributions of different RHA types to the final blended Portland cement properties ("H" is used to identify RHA in standardized cements). The experimental results demonstrated that RHA with good pozzolanic properties (large specific surface and high amorphous silica content) had to be limited to 10% cement replacement because of the severe reduction in workability at higher replacement percentages. RHA with lower reactivity, such as crystalline RHA, or fly ash (FA) can be used to prepare binary and ternary blended cements with reactive RHA. It is possible to design the following cements: CEM II/A-H and CEM II/A-(H-V). It would also be possible to design cement (CEM II/B-(H-V) with replacement values of up to 30% and the same 28-day mechanical performance as observed for the Portland cement without mineral addition.

2.
Materials (Basel) ; 17(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473689

RESUMO

Supplementary cementitious materials (SCMs) have been used in the construction industry to mainly reduce the greenhouse gas emissions associated with Portland cement. Of SCMs, the petrochemical industry waste known as fluid catalytic cracking catalyst residue (FCC) is recognized for its high reactivity. Nevertheless, the binders produced using SCMs usually present low mechanical strength at early curing ages. This study aims to assess the effect of different accelerating additives (KOH, sodium silicate SIL, commercial additive SKR) on the mechanical strength of mortars containing FCC. The results show that after only 8 curing hours, the compressive strength gain of the FCC mortars containing SKR was over 100% compared to the FCC mortar with no additive (26.0 vs. 12.8 MPa). Comparing the compressive strength of FCC mortar containing SKR to the control mortar, the enhancement is spetacular (6.85 vs. 26.03 MPa). The effectiveness of the tested accelerators at 8-24 curing hours was KOH ≈ SIL < SKR, whereas it was KOH < SIL < SKR for 48 h-28 days. The thermogravimetric data confirmed the good compatibility of FCC and the commercial accelerator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA