Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 572534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117317

RESUMO

Coral reefs are highly diverse marine ecosystems increasingly threatened on a global scale. The foundation species of reef ecosystems are stony corals that depend on their symbiotic microalgae and bacteria for aspects of their metabolism, immunity, and environmental adaptation. Conversely, the function of viruses in coral biology is less well understood, and we are missing an understanding of the diversity and function of coral viruses, particularly in understudied regions such as the Red Sea. Here we characterized coral-associated viruses using a large metagenomic and metatranscriptomic survey across 101 cnidarian samples from the central Red Sea. While DNA and RNA viral composition was different across coral hosts, biological traits such as coral life history strategy correlated with patterns of viral diversity. Coral holobionts were broadly associated with Mimiviridae and Phycodnaviridae that presumably infect protists and algal cells, respectively. Further, Myoviridae and Siphoviridae presumably target members of the bacterial phyla Actinobacteria, Firmicutes, and Proteobacteria, whereas Hepadnaviridae and Retroviridae might infect the coral host. Genes involved in bacterial virulence and auxiliary metabolic genes were common among the viral sequences, corroborating a contribution of viruses to the holobiont's genetic diversity. Our work provides a first insight into Red Sea coral DNA and RNA viral assemblages and reveals that viral diversity is consistent with global coral virome patterns.

2.
Environ Microbiol ; 22(8): 3505-3521, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510835

RESUMO

Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analysed for gene expression and DOM chemical composition. Microbial gene expression (metatranscriptomics) in light and dark treatments diverged substantially after 4 h. Gene expression suggested that sunlight exposure of DOM initially stimulated microbial growth by (i) replacing the function of enzymes that degrade higher molecular weight DOM such as enzymes for aromatic carbon degradation, oxygenation, and decarboxylation, and (ii) releasing low molecular weight compounds and inorganic nutrients from DOM. However, growth stimulation following sunlight exposure of DOM came at a cost. Sunlight depleted the pool of aromatic compounds that supported microbial growth in the dark treatment, ultimately causing slower growth in the light treatment over 5 days. These first measurements of microbial metatranscriptomic responses to photo-alteration of DOM provide a mechanistic explanation for how sunlight exposure of terrigenous DOM alters microbial processing and respiration of DOM.


Assuntos
Bactérias/metabolismo , Água Doce/microbiologia , Compostos Orgânicos/metabolismo , Luz Solar , Bactérias/genética , Carbono/metabolismo , Análise Custo-Benefício , Perfilação da Expressão Gênica , Gases de Efeito Estufa/análise , Solo/química , Transcriptoma/genética
3.
Front Microbiol ; 8: 882, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588561

RESUMO

Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 µm and >2.0 µm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.

4.
PeerJ ; 5: e3315, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28584701

RESUMO

Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species), and reduced stability (increased beta-diversity). Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales) increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM) to a maximum mean relative abundance of 48.75% (±0.14 SEM) in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by consuming foreign or "alien" gram negative bacteria. Halobacteriovorax inoculation also altered the microbiome but to a lesser degree than V. coralliilyticus, and Halobacteriovorax were never detected after inoculation. Simultaneous challenge with both V. coralliilyticus and predatory Halobacteriovorax eliminated the increase in V. coralliilyticus, ameliorated changes to the rest of the coral microbiome, and prevented the secondary blooms of opportunistic Rhodobacterales and Cytophagales seen in the V. coralliilyticus challenge. These data suggest that, under certain circumstances, host-associated bacterial predators may mitigate the ability of other bacteria to destabilize the microbiome.

5.
Nat Rev Microbiol ; 15(4): 205-216, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28090075

RESUMO

Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.


Assuntos
Antozoários/virologia , Recifes de Corais , Microbiota , Água do Mar/química , Água do Mar/virologia , Vírus/classificação , Animais , DNA Viral/genética , Ecossistema , Genoma Viral/genética , RNA Viral/genética , Simbiose , Vírus/genética , Vírus/isolamento & purificação
6.
Nat Commun ; 7: 11833, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27270557

RESUMO

Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.


Assuntos
Recifes de Corais , Poluição Ambiental , Pesqueiros , Microbiota , Temperatura , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/microbiologia , Biodiversidade , Eutrofização , Herbivoria/fisiologia , Comportamento Predatório , Estações do Ano
7.
ISME J ; 10(6): 1540-4, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26613338

RESUMO

In many ecological communities, predation has a key role in regulating community structure or function. Although predation has been extensively explored in animals and microbial eukaryotes, predation by bacteria is less well understood. Here we show that predatory bacteria of the genus Halobacteriovorax are prevalent and active predators on the surface of several genera of reef-building corals. Across a library of 198 16S rRNA samples spanning three coral genera, 79% were positive for carriage of Halobacteriovorax. Cultured Halobacteriovorax from Porites asteroides corals tested positive for predation on the putative coral pathogens Vibrio corallyticus and Vibrio harveyii. Co-occurrence network analysis showed that Halobacteriovorax's interactions with other bacteria are influenced by temperature and inorganic nutrient concentration, and further suggested that this bacterial predator's abundance may be driven by prey availability. Thus, animal microbiomes can harbor active bacterial predators, which may regulate microbiome structure and protect the host by consuming potential pathogens.


Assuntos
Antozoários/microbiologia , Microbiota , Proteobactérias/genética , Animais , Biota , Recifes de Corais , Interações Microbianas , Proteobactérias/isolamento & purificação , Vibrio/genética , Vibrio/isolamento & purificação
8.
Front Microbiol ; 5: 493, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295032

RESUMO

Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse microbes; as major agents of microbial mortality, viruses are likely to influence microbial processes in these ecosystems. However, little is known about marine viruses in these rapidly changing ecosystems. Here we examined spatial and short-term temporal variability in marine viral abundance (VA) and viral lytic activity across various reef habitats surrounding Moorea Island (French Polynesia) in the South Pacific. Water samples were collected along four regional cross-reef transects and during a time-series in Opunohu Bay. Results revealed high VA (range: 5.6 × 10(6)-3.6 × 10(7) viruses ml(-1)) and lytic viral production (range: 1.5 × 10(9)-9.2 × 10(10) viruses l(-1) d(-1)). Flow cytometry revealed that viral assemblages were composed of three subsets that each displayed distinct spatiotemporal relationships with nutrient concentrations and autotrophic and heterotrophic microbial abundances. The results highlight dynamic shifts in viral community structure and imply that each of these three subsets is ecologically important and likely to infect distinct microbial hosts in reef waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible for the removal of ca. 24-367% of bacterial standing stock d(-1) and the release of ca. 1.0-62 µg of organic carbon l(-1) d(-1) in reef waters. Overall, this work demonstrates the highly dynamic distribution of viruses and their critical roles in controlling microbial mortality and nutrient cycling in coral reef water ecosystems.

9.
PLoS One ; 7(12): e52794, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285186

RESUMO

One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.


Assuntos
Modelos Estatísticos , Células Procarióticas , Estações do Ano , Água do Mar/microbiologia , Água do Mar/virologia , Vírus , Microbiologia da Água , Regiões Árticas , Simulação por Computador , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA