Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7511, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980423

RESUMO

Sodium-dependent glucose transporters (SGLTs) couple a downhill Na+ ion gradient to actively transport sugars. Here, we investigate the impact of the membrane potential on vSGLT structure and function using sugar uptake assays, double electron-electron resonance (DEER), electrostatic calculations, and kinetic modeling. Negative membrane potentials, as present in all cell types, shift the conformational equilibrium of vSGLT towards an outward-facing conformation, leading to increased sugar transport rates. Electrostatic calculations identify gating charge residues responsible for this conformational shift that when mutated reduce galactose transport and eliminate the response of vSGLT to potential. Based on these findings, we propose a comprehensive framework for sugar transport via vSGLT, where the cellular membrane potential facilitates resetting of the transporter after cargo release. This framework holds significance not only for SGLTs but also for other transporters and channels.


Assuntos
Simportadores , Simportadores/metabolismo , Açúcares , Glucose , Potenciais da Membrana , Galactose/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/química , Proteínas de Transporte de Sódio-Glucose/metabolismo , Sódio/metabolismo , Conformação Proteica
2.
PLoS One ; 18(4): e0280975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079572

RESUMO

Nucleotide Sugar Transporters (NSTs) belong to the SLC35 family (human solute carrier) of membrane transport proteins and are crucial components of the glycosylation machinery. NSTs are localized in the ER and Golgi apparatus membranes, where they accumulate nucleotide sugars from the cytosol for subsequent polysaccharide biosynthesis. Loss of NST function impacts the glycosylation of cell surface molecules. Mutations in NSTs cause several developmental disorders, immune disorders, and increased susceptibility to infection. Atomic resolution structures of three NSTs have provided a blueprint for a detailed molecular interpretation of their biochemical properties. In this work, we have identified, cloned, and expressed 18 members of the SLC35 family from various eukaryotic organisms in Saccharomyces cerevisiae. Out of 18 clones, we determined Vrg4 from Chaetomium thermophilum (CtVrg4) is a GDP-mannose transporter with an enhanced melting point temperature (Tm) of 56.9°C, which increases with the addition of substrates, GMP and GDP-mannose. In addition, we report-for the first time-that the CtVrg4 shows an affinity to bind to phosphatidylinositol lipids.


Assuntos
Proteínas de Transporte , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas de Transporte/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/genética , Glicosilação , Nucleotídeos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Clin Cancer Res ; 27(15): 4301-4310, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33664059

RESUMO

PURPOSE: OATP1B1 (SLCO1B1) is the most abundant and pharmacologically relevant uptake transporter in the liver and a key mediator of xenobiotic clearance. However, the regulatory mechanisms that determine OATP1B1 activity remain uncertain, and as a result, unexpected drug-drug interactions involving OATP1B1 substrates continue to be reported, including several involving tyrosine kinase inhibitors (TKI). EXPERIMENTAL DESIGN: OATP1B1-mediated activity in overexpressing HEK293 cells and hepatocytes was assessed in the presence of FDA-approved TKIs, while rosuvastatin pharmacokinetics in the presence of an OATP1B1 inhibiting TKI were measured in vivo. Tyrosine phosphorylation of OATP1B1 was determined by LC/MS-MS-based proteomics and transport function was measured following exposure to siRNAs targeting 779 different kinases. RESULTS: Twenty-nine of 46 FDA-approved TKIs studied significantly inhibit OATP1B1 function. Inhibition of OATP1B1 by TKIs, such as nilotinib, is predominantly noncompetitive, can increase systemic concentrations of rosuvastatin in vivo, and is associated with reduced phosphorylation of OATP1B1 at tyrosine residue 645. Using genetic screens and functional validation studies, the Src kinase LYN was identified as a potential regulator of OATP1B1 activity that is highly sensitive to inhibition by various TKIs at clinically relevant concentrations. CONCLUSIONS: A novel kinase-dependent posttranslational mechanism of OATP1B1 activation was identified and interference with this process by TKIs can influence the elimination of a broad range of xenobiotic substrates.


Assuntos
Células HEK293/metabolismo , Hepatócitos/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/fisiologia , Proteínas Tirosina Quinases/fisiologia , Animais , Humanos , Camundongos , Fosforilação
4.
Nat Commun ; 9(1): 1753, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717135

RESUMO

Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.


Assuntos
Transportadores de Ânions Orgânicos/metabolismo , Sódio/metabolismo , Simportadores/metabolismo , Sequência de Aminoácidos , Ácido N-Acetilneuramínico/metabolismo , Transportadores de Ânions Orgânicos/química , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Simportadores/química
5.
Proc Natl Acad Sci U S A ; 115(12): E2742-E2751, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507231

RESUMO

Sodium-dependent transporters couple the flow of Na+ ions down their electrochemical potential gradient to the uphill transport of various ligands. Many of these transporters share a common core structure composed of a five-helix inverted repeat and deliver their cargo utilizing an alternating-access mechanism. A detailed characterization of inward-facing conformations of the Na+-dependent sugar transporter from Vibrio parahaemolyticus (vSGLT) has previously been reported, but structural details on additional conformations and on how Na+ and ligand influence the equilibrium between other states remains unknown. Here, double electron-electron resonance spectroscopy, structural modeling, and molecular dynamics are utilized to deduce ligand-dependent equilibria shifts of vSGLT in micelles. In the absence and presence of saturating amounts of Na+, vSGLT favors an inward-facing conformation. Upon binding both Na+ and sugar, the equilibrium shifts toward either an outward-facing or occluded conformation. While Na+ alone does not stabilize the outward-facing state, gating charge calculations together with a kinetic model of transport suggest that the resting negative membrane potential of the cell, absent in detergent-solubilized samples, may stabilize vSGLT in an outward-open conformation where it is poised for binding external sugars. In total, these findings provide insights into ligand-induced conformational selection and delineate the transport cycle of vSGLT.


Assuntos
Proteínas de Transporte de Sódio-Glucose/química , Proteínas de Transporte de Sódio-Glucose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo , Cisteína/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Galactose/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Micelas , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Sódio/metabolismo , Vibrio parahaemolyticus/química
6.
Proc Natl Acad Sci U S A ; 114(46): E9980-E9988, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087341

RESUMO

In the human sodium glucose cotransporter (hSGLT1) cycle, the protein undergoes conformational changes where the sugar-binding site alternatively faces the external and internal surfaces. Functional site-directed fluorometry was used to probe the conformational changes at the sugar-binding site. Residues (Y290, T287, H83, and N78) were mutated to cysteines. The mutants were expressed in Xenopus laevis oocytes and tagged with environmentally sensitive fluorescent rhodamines [e.g., tetramethylrhodamine (TMR)-thiols]. The fluorescence intensity was recorded as the mutants were driven into different conformations using voltage jumps. Sugar binding and transport by the fluorophore-tagged mutants were blocked, but Na+ binding and the voltage-dependent conformational transitions were unaffected. Structural models indicated that external Na+ binding opened a large aqueous vestibule (600 Å3) leading to the sugar-binding site. The fluorescence of TMR covalently linked to Y290C, T287C, and H83C decreased as the mutant proteins were driven from the inward to the outward open Na+-bound conformation. The time courses of fluorescence changes (milliseconds) were close to the SGLT1 capacitive charge movements. The quench in rhodamine fluorescence indicated that the environment of the chromophores became more polar with opening of the external gates as the protein transitioned from the inward to outward facing state. Structural analyses showed an increase in polar side chains and a decrease in hydrophobic side chains lining the vestibule, and this was reflected in solvation of the chromophore. The results demonstrate the opening and closing of external gates in real time, with the accompanying changes of polarity of the sugar vestibule.


Assuntos
Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Domínio Catalítico/fisiologia , Fluorometria/métodos , Técnicas de Patch-Clamp/métodos , Transportador 1 de Glucose-Sódio/química , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Sítios de Ligação/genética , Domínio Catalítico/efeitos dos fármacos , Cisteína , Expressão Gênica , Glucose/metabolismo , Íons/metabolismo , Modelos Animais , Modelos Moleculares , Técnicas de Sonda Molecular , Mutação , Oócitos/metabolismo , Polietilenoglicóis/química , Conformação Proteica , Rodaminas/farmacologia , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Simportadores/metabolismo , Xenopus laevis
7.
Sci Signal ; 9(420): ra31, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27016526

RESUMO

More than 60 members of the Rab family of guanosine triphosphatases (GTPases) exist in the human genome. Rab GTPases are small proteins that are primarily involved in the formation, trafficking, and fusion of vesicles. We showed thatCRACR2A(Ca(2+) release-activated Ca(2+) channel regulator 2A) encodes a lymphocyte-specific large Rab GTPase that contains multiple functional domains, including EF-hand motifs, a proline-rich domain (PRD), and a Rab GTPase domain with an unconventional prenylation site. Through experiments involving gene silencing in cells and knockout mice, we demonstrated a role for CRACR2A in the activation of the Ca(2+) and c-Jun N-terminal kinase signaling pathways in response to T cell receptor (TCR) stimulation. Vesicles containing this Rab GTPase translocated from near the Golgi to the immunological synapse formed between a T cell and a cognate antigen-presenting cell to activate these signaling pathways. The interaction between the PRD of CRACR2A and the guanidine nucleotide exchange factor Vav1 was required for the accumulation of these vesicles at the immunological synapse. Furthermore, we demonstrated that GTP binding and prenylation of CRACR2A were associated with its localization near the Golgi and its stability. Our findings reveal a previously uncharacterized function of a large Rab GTPase and vesicles near the Golgi in TCR signaling. Other GTPases with similar domain architectures may have similar functions in T cells.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Sinapses Imunológicas/metabolismo , Ativação Linfocitária/fisiologia , Linfócitos T/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Células HEK293 , Humanos , Sinapses Imunológicas/genética , Células Jurkat , Camundongos , Camundongos Knockout , Linfócitos T/citologia
9.
J Biol Chem ; 290(1): 127-41, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25398883

RESUMO

The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ~1. In addition, the related and more experimentally tractable SSS member PutP (the Na(+)/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Proteínas de Escherichia coli/química , Galactose/química , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/química , Proteínas de Transporte de Sódio-Glucose/química , Sódio/química , Simportadores/química , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sítios de Ligação , Transporte Biológico , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Galactose/metabolismo , Cinética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Sódio/metabolismo , Proteínas de Transporte de Sódio-Glucose/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Simportadores/metabolismo , Termodinâmica , Vibrio parahaemolyticus/química , Vibrio parahaemolyticus/metabolismo
10.
Nat Struct Mol Biol ; 21(7): 626-32, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908397

RESUMO

The voltage-dependent anion channel (VDAC) mediates the flow of metabolites and ions across the outer mitochondrial membrane of all eukaryotic cells. The open channel passes millions of ATP molecules per second, whereas the closed state exhibits no detectable ATP flux. High-resolution structures of VDAC1 revealed a 19-stranded ß-barrel with an α-helix partially occupying the central pore. To understand ATP permeation through VDAC, we solved the crystal structure of mouse VDAC1 (mVDAC1) in the presence of ATP, revealing a low-affinity binding site. Guided by these coordinates, we initiated hundreds of molecular dynamics simulations to construct a Markov state model of ATP permeation. These simulations indicate that ATP flows through VDAC through multiple pathways, in agreement with our structural data and experimentally determined physiological rates.


Assuntos
Trifosfato de Adenosina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Cadeias de Markov , Camundongos , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/fisiologia
11.
J Biol Chem ; 289(18): 12566-77, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627492

RESUMO

In recent years, there has been a vast increase in structural and functional understanding of VDAC1, but VDAC2 and -3 have been understudied despite having many unique phenotypes. One reason for the paucity of structural and biochemical characterization of the VDAC2 and -3 isoforms stems from the inability of obtaining purified, functional protein. Here we demonstrate the expression, isolation, and basic characterization of zebrafish VDAC2 (zfVDAC2). Further, we resolved the structure of zfVDAC2 at 2.8 Šresolution, revealing a crystallographic dimer. The dimer orientation was confirmed in solution by double electron-electron resonance spectroscopy and by cross-linking experiments disclosing a dimer population of ∼20% in lauryldimethine amine oxide detergent micelles, whereas in lipidic bicelles a higher population of dimeric and higher order oligomers species were observed. The present study allows for a more accurate structural comparison between VDAC2 and its better-studied counterpart VDAC1.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Multimerização Proteica , Canal de Ânion 2 Dependente de Voltagem/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Condutividade Elétrica , Eletroforese em Gel de Poliacrilamida , Bicamadas Lipídicas/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Canal de Ânion 2 Dependente de Voltagem/genética , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Chem Biol Interact ; 203(1): 63-6, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23159732

RESUMO

The photosensitizer, methylene blue (MB), generates singlet oxygen ((1)O2) that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark MB inhibits reversibly, binding being accompanied by a bathochromic shift that can be used to show its displacement by other reversible inhibitors binding to the catalytic 'anionic' subsite (CAS), the peripheral 'anionic' subsite (PAS), or bridging them. Data concerning both reversible and irreversible inhibition are here reviewed. MB protects TcAChE from thermal denaturation, and differential scanning calorimetry reveals a ~8 °C increase in the denaturation temperature. The crystal structure of the MB/TcAChE complex reveals a single MB stacked against W279 in the PAS, pointing down the gorge towards the CAS. The intrinsic fluorescence of the irreversibly inhibited enzyme displays new emission bands that can be ascribed to N'-formylkynurenine (NFK); this was indeed confirmed using anti-NFK antibodies. Mass spectroscopy revealed that two Trp residues, Trp84 in the CAS, and Trp279 in the PAS, were the only Trp residues, out of a total of 14, significantly modified by photo-oxidation, both being converted to NFK. In the presence of competitive inhibitors that displace MB from the gorge, their modification is completely prevented. Thus, photo-oxidative damage caused by MB involves targeted release of (1)O2 by the bound photosensitizer within the aqueous milieu of the active-site gorge.


Assuntos
Acetilcolinesterase/metabolismo , Azul de Metileno/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/genética , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Cinética , Azul de Metileno/química , Azul de Metileno/farmacologia , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Conformação Proteica , Torpedo
13.
J Biol Chem ; 287(43): 35779-83, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22896702

RESUMO

The flagellar motor is one type of propulsion device of motile bacteria. The cytoplasmic ring (C-ring) of the motor interacts with the stator to generate torque in clockwise and counterclockwise directions. The C-ring is composed of three proteins, FliM, FliN, and FliG. Together they form the "switch complex" and regulate switching and torque generation. Here we report the crystal structure of the middle domain of FliM in complex with the middle and C-terminal domains of FliG that shows the interaction surface and orientations of the proteins. In the complex, FliG assumes a compact conformation in which the middle and C-terminal domains (FliG(MC)) collapse and stack together similarly to the recently published structure of a mutant of FliG(MC) with a clockwise rotational bias. This intramolecular stacking of the domains is distinct from the intermolecular stacking seen in other structures of FliG. We fit the complex structure into the three-dimensional reconstructions of the motor and propose that the cytoplasmic ring is assembled from 34 FliG and FliM molecules in a 1:1 fashion.


Assuntos
Proteínas de Bactérias/química , Complexos Multiproteicos/química , Salmonella typhimurium/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Flagelos/química , Flagelos/genética , Complexos Multiproteicos/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/genética
14.
Protein Sci ; 21(8): 1138-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22674800

RESUMO

The photosensitizer, methylene blue (MB), generates singlet oxygen that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark, it inhibits reversibly. Binding is accompanied by a bathochromic absorption shift, used to demonstrate displacement by other acetylcholinesterase inhibitors interacting with the catalytic "anionic" subsite (CAS), the peripheral "anionic" subsite (PAS), or bridging them. MB is a noncompetitive inhibitor of TcAChE, competing with reversible inhibitors directed at both "anionic" subsites, but a single site is involved in inhibition. MB also quenches TcAChE's intrinsic fluorescence. It binds to TcAChE covalently inhibited by a small organophosphate (OP), but not an OP containing a bulky pyrene. Differential scanning calorimetry shows an ~8° increase in the denaturation temperature of the MB/TcAChE complex relative to native TcAChE, and a less than twofold increase in cooperativity of the transition. The crystal structure reveals a single MB stacked against Trp279 in the PAS, oriented down the gorge toward the CAS; it is plausible that irreversible inhibition is associated with photooxidation of this residue and others within the active-site gorge. The kinetic and spectroscopic data showing that inhibitors binding at the CAS can impede binding of MB are reconciled by docking studies showing that the conformation adopted by Phe330, midway down the gorge, in the MB/TcAChE crystal structure, precludes simultaneous binding of a second MB at the CAS. Conversely, binding of ligands at the CAS dislodges MB from its preferred locus at the PAS. The data presented demonstrate that TcAChE is a valuable model for understanding the molecular basis of local photooxidative damage.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Proteínas de Peixes/metabolismo , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Torpedo/metabolismo , Acetilcolinesterase/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Peixes/química , Modelos Moleculares
16.
Biomol NMR Assign ; 6(1): 15-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21647611

RESUMO

Neuroligins act as heterophilic adhesion molecules at neuronal synapses. Their cytoplasmic domains interact with synaptic scaffolding proteins, and have been shown to be intrinsically disordered. Here we report the backbone and side chain (1)H, (13)C and (15)N resonance assignments for the cytoplasmic domain of human neuroligin 3.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Citoplasma/metabolismo , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Sequência de Aminoácidos , Moléculas de Adesão Celular Neuronais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína
17.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 1): 13-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22194329

RESUMO

ß-Secretase (ß-site amyloid precursor protein-cleaving enzyme 1; BACE1) is a transmembrane aspartic protease that cleaves the ß-amyloid precursor protein en route to generation of the amyloid ß-peptide (Aß) that is believed to be responsible for the Alzheimer's disease amyloid cascade. It is thus a prime target for the development of inhibitors which may serve as drugs in the treatment and/or prevention of Alzheimer's disease. In the following determination of the crystal structures of both apo and complexed BACE1, structural analysis of all crystal structures of BACE1 deposited in the PDB and molecular dynamics (MD) simulations of monomeric and `dimeric' BACE1 were used to study conformational changes in the active-site region of the enzyme. It was observed that a flap able to cover the active site is the most flexible region, adopting multiple conformational states in the various crystal structures. Both the presence or absence of an inhibitor within the active site and the crystal packing are shown to influence the flap's conformation. An open conformation of the flap is mostly observed in the apo structures, while direct hydrogen-bonding interaction between main-chain atoms of the flap and the inhibitor is a prerequisite for the flap to adopt a closed conformation in the crystal structures of complexes. Thus, a systematic study of the conformational flexibility of the enzyme may not only contribute to structure-based drug design of BACE1 inhibitors and of other targets with flexible conformations, but may also help to better understand the mechanistic events associated with the binding of substrates and inhibitors to the enzyme.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína
18.
Biophys J ; 97(8): 2316-26, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19843464

RESUMO

Amalgam (Ama) is a secreted neuronal adhesion protein that contains three tandem immunoglobulin domains. It has both homophilic and heterophilic cell adhesion properties, and is required for axon guidance and fasciculation during early stages of Drosophila development. Here, we report its biophysical characterization and use small-angle x-ray scattering to determine its low-resolution structure in solution. The biophysical studies revealed that Ama forms dimers in solution, and that its secondary and tertiary structures are typical for the immunoglobulin superfamily. Ab initio and rigid-body modeling by small-angle x-ray scattering revealed a distinct V-shaped dimer in which the two monomer chains are aligned parallel to each other, with the dimerization interface being formed by domain 1. These data provide a structural basis for the dual adhesion characteristics of Ama. Thus, the dimeric structure explains its homophilic adhesion properties. Its V shape suggests a mechanism for its interaction with its receptor, the single-pass transmembrane adhesion protein neurotactin, in which each "arm" of Ama binds to the extracellular domain of neurotactin, thus promoting its clustering on the outer face of the plasma membrane.


Assuntos
Proteínas de Drosophila/química , Imunoglobulinas/química , Animais , Dicroísmo Circular , Drosophila , Proteínas de Drosophila/genética , Imunoglobulinas/genética , Modelos Químicos , Modelos Moleculares , Dinâmica não Linear , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Espectrometria de Fluorescência , Temperatura , Ultracentrifugação , Difração de Raios X
19.
Proteins ; 77 Suppl 9: 50-65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19774550

RESUMO

The biennial CASP experiment is a crucial way to evaluate, in an unbiased way, the progress in predicting novel 3D protein structures. In this article, we assess the quality of prediction of template free models, that is, ab initio prediction of 3D structures of proteins based solely on the amino acid sequences, that is, proteins that did not have significant sequence identity to any protein in the Protein Data Bank. There were 13 targets in this category and 102 groups submitted predictions. Analysis was based on the GDT_TS analysis, which has been used in previous CASP experiments, together with a newly developed method, the OK_Rank, as well as by visual inspection. There is no doubt that in recent years many obstacles have been removed on the long and elusive way to deciphering the protein-folding problem. Out of the 13 targets, six were predicted well by a number of groups. On the other hand, it must be stressed that for four targets, none of the models were judged to be satisfactory. Thus, for template free model prediction, as evaluated in this CASP, successes have been achieved for most targets; however, a great deal of research is still required, both in improving the existing methods and in development of new approaches.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína
20.
J Med Chem ; 52(8): 2543-9, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19326912

RESUMO

A bis-(-)-nor-meptazinol derivative in which the two meptazinol rings are linked by a nonamethylene spacer is a novel acetylcholinesterase inhibitor that inhibits both catalytic activity and Abeta peptide aggregation. The crystal structure of its complex with Torpedo californica acetylcholinesterase was determined to 2.7 A resolution. The ligand spans the active-site gorge, with one nor-meptazinol moiety bound at the "anionic" subsite of the active site, disrupting the catalytic triad by forming a hydrogen bond with His440N(epsilon2), which is hydrogen-bonded to Ser200O(gamma) in the native enzyme. The second nor-meptazinol binds at the peripheral "anionic" site at the gorge entrance. A number of GOLD models of the complex, using both native TcAChE and the protein template from the crystal structure of the bis-(-)-nor-meptazinol/TcAChE complex, bear higher similarity to the X-ray structure than a previous model obtained using the mouse enzyme structure. These findings may facilitate rational design of new meptazinol-based acetylcholinesterase inhibitors.


Assuntos
Acetilcolinesterase/química , Meptazinol/análogos & derivados , Meptazinol/química , Modelos Moleculares , Animais , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Camundongos , Estrutura Molecular , Torpedo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA