RESUMO
HMGA1 is a structural epigenetic chromatin factor that has been associated with tumor progression and drug resistance. Here, we reported the prognostic/predictive value of HMGA1 for trabectedin in advanced soft-tissue sarcoma (STS) and the effect of inhibiting HMGA1 or the mTOR downstream pathway in trabectedin activity. The prognostic/predictive value of HMGA1 expression was assessed in a cohort of 301 STS patients at mRNA (n = 133) and protein level (n = 272), by HTG EdgeSeq transcriptomics and immunohistochemistry, respectively. The effect of HMGA1 silencing on trabectedin activity and gene expression profiling was measured in leiomyosarcoma cells. The effect of combining mTOR inhibitors with trabectedin was assessed on cell viability in vitro studies, whereas in vivo studies tested the activity of this combination. HMGA1 mRNA and protein expression were significantly associated with worse progression-free survival of trabectedin and worse overall survival in STS. HMGA1 silencing sensitized leiomyosarcoma cells for trabectedin treatment, reducing the spheroid area and increasing cell death. The downregulation of HGMA1 significantly decreased the enrichment of some specific gene sets, including the PI3K/AKT/mTOR pathway. The inhibition of mTOR, sensitized leiomyosarcoma cultures for trabectedin treatment, increasing cell death. In in vivo studies, the combination of rapamycin with trabectedin downregulated HMGA1 expression and stabilized tumor growth of 3-methylcholantrene-induced sarcoma-like models. HMGA1 is an adverse prognostic factor for trabectedin treatment in advanced STS. HMGA1 silencing increases trabectedin efficacy, in part by modulating the mTOR signaling pathway. Trabectedin plus mTOR inhibitors are active in preclinical models of sarcoma, downregulating HMGA1 expression levels and stabilizing tumor growth.
Assuntos
Proteína HMGA1a , Sarcoma , Trabectedina , Trabectedina/farmacologia , Humanos , Sarcoma/tratamento farmacológico , Sarcoma/patologia , Sarcoma/genética , Sarcoma/metabolismo , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Animais , Linhagem Celular Tumoral , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Prognóstico , Feminino , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/patologia , Leiomiossarcoma/genética , Leiomiossarcoma/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Large-scale genomic studies have significantly increased our knowledge of genetic variability across populations. Regional genetic profiling is essential for distinguishing common benign variants from disease-causing ones. To this end, we conducted a comprehensive characterization of exonic variants in the population of Navarre (Spain), utilizing whole genome sequencing data from 358 unrelated individuals of Spanish origin. Our analysis revealed 61,410 biallelic single nucleotide variants (SNV) within the Navarrese cohort, with 35% classified as common (MAF > 1%). By comparing allele frequency data from 1000 Genome Project (excluding the Iberian cohort of Spain, IBS), Genome Aggregation Database, and a Spanish cohort (including IBS individuals and data from Medical Genome Project), we identified 1069 SNVs common in Navarre but rare (MAF ≤ 1%) in all other populations. We further corroborated this observation with a second regional cohort of 239 unrelated exomes, which confirmed 676 of the 1069 SNVs as common in Navarre. In conclusion, this study highlights the importance of population-specific characterization of genetic variation to improve allele frequency filtering in sequencing data analysis to identify disease-causing variants.
Assuntos
Frequência do Gene , Polimorfismo de Nucleotídeo Único , Humanos , Espanha , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma , Masculino , Feminino , Genética Populacional , Variação Genética , Genoma Humano , Exoma/genética , Estudos de CoortesRESUMO
We introduce drexml, a command line tool and Python package for rational data-driven drug repurposing. The package employs machine learning and mechanistic signal transduction modeling to identify drug targets capable of regulating a particular disease. In addition, it employs explainability tools to contextualize potential drug targets within the functional landscape of the disease. The methodology is validated in Fanconi Anemia and Familial Melanoma, two distinct rare diseases where there is a pressing need for solutions. In the Fanconi Anemia case, the model successfully predicts previously validated repurposed drugs, while in the Familial Melanoma case, it identifies a promising set of drugs for further investigation.
RESUMO
BACKGROUND: Retinitis pigmentosa is the prevailing genetic cause of blindness in developed nations with no effective treatments. In the pursuit of unraveling the intricate dynamics underlying this complex disease, mechanistic models emerge as a tool of proven efficiency rooted in systems biology, to elucidate the interplay between RP genes and their mechanisms. The integration of mechanistic models and drug-target interactions under the umbrella of machine learning methodologies provides a multifaceted approach that can boost the discovery of novel therapeutic targets, facilitating further drug repurposing in RP. METHODS: By mapping Retinitis Pigmentosa-related genes (obtained from Orphanet, OMIM and HPO databases) onto KEGG signaling pathways, a collection of signaling functional circuits encompassing Retinitis Pigmentosa molecular mechanisms was defined. Next, a mechanistic model of the so-defined disease map, where the effects of interventions can be simulated, was built. Then, an explainable multi-output random forest regressor was trained using normal tissue transcriptomic data to learn causal connections between targets of approved drugs from DrugBank and the functional circuits of the mechanistic disease map. Selected target genes involvement were validated on rd10 mice, a murine model of Retinitis Pigmentosa. RESULTS: A mechanistic functional map of Retinitis Pigmentosa was constructed resulting in 226 functional circuits belonging to 40 KEGG signaling pathways. The method predicted 109 targets of approved drugs in use with a potential effect over circuits corresponding to nine hallmarks identified. Five of those targets were selected and experimentally validated in rd10 mice: Gabre, Gabra1 (GABARα1 protein), Slc12a5 (KCC2 protein), Grin1 (NR1 protein) and Glr2a. As a result, we provide a resource to evaluate the potential impact of drug target genes in Retinitis Pigmentosa. CONCLUSIONS: The possibility of building actionable disease models in combination with machine learning algorithms to learn causal drug-disease interactions opens new avenues for boosting drug discovery. Such mechanistically-based hypotheses can guide and accelerate the experimental validations prioritizing drug target candidates. In this work, a mechanistic model describing the functional disease map of Retinitis Pigmentosa was developed, identifying five promising therapeutic candidates targeted by approved drug. Further experimental validation will demonstrate the efficiency of this approach for a systematic application to other rare diseases.
Assuntos
Retinose Pigmentar , Camundongos , Animais , Retinose Pigmentar/tratamento farmacológico , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Transdução de SinaisRESUMO
Soft tissue sarcoma is an umbrella term for a group of rare cancers that are difficult to treat. In addition to surgery, neoadjuvant chemotherapy has shown the potential to downstage tumors and prevent micrometastases. However, finding effective therapeutic targets remains a research challenge. Here, a previously developed computational approach called mechanistic models of signaling pathways has been employed to unravel the impact of observed changes at the gene expression level on the ultimate functional behavior of cells. In the context of such a mechanistic model, RNA-Seq counts sourced from the Recount3 resource, from The Cancer Genome Atlas (TCGA) Sarcoma project, and non-diseased sarcomagenic tissues from the Genotype-Tissue Expression (GTEx) project were utilized to investigate signal transduction activity through signaling pathways. This approach provides a precise view of the relationship between sarcoma patient survival and the signaling landscape in tumors and their environment. Despite the distinct regulatory alterations observed in each sarcoma subtype, this study identified 13 signaling circuits, or elementary sub-pathways triggering specific cell functions, present across all subtypes, belonging to eight signaling pathways, which served as predictors for patient survival. Additionally, nine signaling circuits from five signaling pathways that highlighted the modifications tumor samples underwent in comparison to normal tissues were found. These results describe the protective role of the immune system, suggesting an anti-tumorigenic effect in the tumor microenvironment, in the process of tumor cell detachment and migration, or the dysregulation of ion homeostasis. Also, the analysis of signaling circuit intermediary proteins suggests multiple strategies for therapy.
Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Sarcoma/patologia , RNA-Seq , Perfilação da Expressão Gênica , Microambiente Tumoral/genéticaRESUMO
PURPOSE: Despite the extensive vaccination campaigns in many countries, COVID-19 is still a major worldwide health problem because of its associated morbidity and mortality. Therefore, finding efficient treatments as fast as possible is a pressing need. Drug repurposing constitutes a convenient alternative when the need for new drugs in an unexpected medical scenario is urgent, as is the case with COVID-19. METHODS: Using data from a central registry of electronic health records (the Andalusian Population Health Database), the effect of prior consumption of drugs for other indications previous to the hospitalization with respect to patient outcomes, including survival and lymphocyte progression, was studied on a retrospective cohort of 15,968 individuals, comprising all COVID-19 patients hospitalized in Andalusia between January and November 2020. RESULTS: Covariate-adjusted hazard ratios and analysis of lymphocyte progression curves support a significant association between consumption of 21 different drugs and better patient survival. Contrarily, one drug, furosemide, displayed a significant increase in patient mortality. CONCLUSIONS: In this study we have taken advantage of the availability of a regional clinical database to study the effect of drugs, which patients were taking for other indications, on their survival. The large size of the database allowed us to control covariates effectively.
Assuntos
COVID-19 , Humanos , Estudos Retrospectivos , COVID-19/epidemiologia , Resultado do Tratamento , Bases de Dados Factuais , FurosemidaRESUMO
Caloric restriction is a non-pharmacological intervention known to ameliorate the metabolic defects associated with aging, including insulin resistance. The levels of miRNA expression may represent a predictive tool for aging-related alterations. In order to investigate the role of miRNAs underlying insulin resistance in adipose tissue during the early stages of aging, 3- and 12-month-old male animals fed ad libitum, and 12-month-old male animals fed with a 20% caloric restricted diet were used. In this work we demonstrate that specific miRNAs may contribute to the impaired insulin-stimulated glucose metabolism specifically in the subcutaneous white adipose tissue, through the regulation of target genes implicated in the insulin signaling cascade. Moreover, the expression of these miRNAs is modified by caloric restriction in middle-aged animals, in accordance with the improvement of the metabolic state. Overall, our work demonstrates that alterations in posttranscriptional gene expression because of miRNAs dysregulation might represent an endogenous mechanism by which insulin response in the subcutaneous fat depot is already affected at middle age. Importantly, caloric restriction could prevent this modulation, demonstrating that certain miRNAs could constitute potential biomarkers of age-related metabolic alterations.
Assuntos
Resistência à Insulina , MicroRNAs , Animais , Masculino , Insulina/metabolismo , Restrição Calórica , Resistência à Insulina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento/metabolismoRESUMO
Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.
RESUMO
The implementation of pharmacogenetics (PGx) is a main milestones of precision medicine nowadays in order to achieve safer and more effective therapies. Nevertheless, the implementation of PGx diagnostics is extremely slow and unequal worldwide, in part due to a lack of ethnic PGx information. We analysed genetic data from 3006 Spanish individuals obtained by different high-throughput (HT) techniques. Allele frequencies were determined in our population for the main 21 actionable PGx genes associated with therapeutical changes. We found that 98% of the Spanish population harbours at least one allele associated with a therapeutical change and, thus, there would be a need for a therapeutical change in a mean of 3.31 of the 64 associated drugs. We also identified 326 putative deleterious variants that were not previously related with PGx in 18 out of the 21 main PGx genes evaluated and a total of 7122 putative deleterious variants for the 1045 PGx genes described. Additionally, we performed a comparison of the main HT diagnostic techniques, revealing that after whole genome sequencing, genotyping with the PGx HT array is the most suitable solution for PGx diagnostics. Finally, all this information was integrated in the Collaborative Spanish Variant Server to be available to and updated by the scientific community.
RESUMO
The reprogramming of metabolism is a recognized cancer hallmark. It is well known that different signaling pathways regulate and orchestrate this reprogramming that contributes to cancer initiation and development. However, recent evidence is accumulating, suggesting that several metabolites could play a relevant role in regulating signaling pathways. To assess the potential role of metabolites in the regulation of signaling pathways, both metabolic and signaling pathway activities of Breast invasive Carcinoma (BRCA) have been modeled using mechanistic models. Gaussian Processes, powerful machine learning methods, were used in combination with SHapley Additive exPlanations (SHAP), a recent methodology that conveys causality, to obtain potential causal relationships between the production of metabolites and the regulation of signaling pathways. A total of 317 metabolites were found to have a strong impact on signaling circuits. The results presented here point to the existence of a complex crosstalk between signaling and metabolic pathways more complex than previously was thought.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Transdução de Sinais , Aprendizado de Máquina , Redes e Vias MetabólicasRESUMO
BACKGROUND: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. RESULTS: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/ . CONCLUSION: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.
Assuntos
Crowdsourcing , Variações do Número de Cópias de DNA , Variações do Número de Cópias de DNA/genética , Genômica , Fenótipo , Bases de Dados FactuaisRESUMO
Introduction: The COVID-19 Disease Map project is a large-scale community effort uniting 277 scientists from 130 Institutions around the globe. We use high-quality, mechanistic content describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines for novel target identification and drug repurposing. Methods: Extensive community work allowed an impressive step forward in building interfaces between Systems Biology tools and platforms. Our framework can link biomolecules from omics data analysis and computational modelling to dysregulated pathways in a cell-, tissue- or patient-specific manner. Drug repurposing using text mining and AI-assisted analysis identified potential drugs, chemicals and microRNAs that could target the identified key factors. Results: Results revealed drugs already tested for anti-COVID-19 efficacy, providing a mechanistic context for their mode of action, and drugs already in clinical trials for treating other diseases, never tested against COVID-19. Discussion: The key advance is that the proposed framework is versatile and expandable, offering a significant upgrade in the arsenal for virus-host interactions and other complex pathologies.
Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Reposicionamento de Medicamentos , Biologia de Sistemas , Simulação por ComputadorRESUMO
Gut microbiome is gaining interest because of its links with several diseases, including colorectal cancer (CRC), as well as the possibility of being used to obtain non-intrusive predictive disease biomarkers. Here we performed a meta-analysis of 1042 fecal metagenomic samples from seven publicly available studies. We used an interpretable machine learning approach based on functional profiles, instead of the conventional taxonomic profiles, to produce a highly accurate predictor of CRC with better precision than those of previous proposals. Moreover, this approach is also able to discriminate samples with adenoma, which makes this approach very promising for CRC prevention by detecting early stages in which intervention is easier and more effective. In addition, interpretable machine learning methods allow extracting features relevant for the classification, which reveals basic molecular mechanisms accounting for the changes undergone by the microbiome functional landscape in the transition from healthy gut to adenoma and CRC conditions. Functional profiles have demonstrated superior accuracy in predicting CRC and adenoma conditions than taxonomic profiles and additionally, in a context of explainable machine learning, provide useful hints on the molecular mechanisms operating in the microbiota behind these conditions.
Assuntos
Adenoma/microbiologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Aprendizado de Máquina , Metagenômica/métodos , HumanosRESUMO
Recent studies have demonstrated a relevant role of the host genetics in the coronavirus disease 2019 (COVID-19) prognosis. Most of the 7000 rare diseases described to date have a genetic component, typically highly penetrant. However, this vast spectrum of genetic variability remains yet unexplored with respect to possible interactions with COVID-19. Here, a mathematical mechanistic model of the COVID-19 molecular disease mechanism has been used to detect potential interactions between rare disease genes and the COVID-19 infection process and downstream consequences. Out of the 2518 disease genes analyzed, causative of 3854 rare diseases, a total of 254 genes have a direct effect on the COVID-19 molecular disease mechanism and 207 have an indirect effect revealed by a significant strong correlation. This remarkable potential of interaction occurs for >300 rare diseases. Mechanistic modeling of COVID-19 disease map has allowed a holistic systematic analysis of the potential interactions between the loss of function in known rare disease genes and the pathological consequences of COVID-19 infection. The results identify links between disease genes and COVID-19 hallmarks and demonstrate the usefulness of the proposed approach for future preventive measures in some rare diseases.
Assuntos
COVID-19 , Viroses , COVID-19/genética , Humanos , Modelos Estatísticos , Doenças Raras/genéticaRESUMO
Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy causing progressive vision loss. It is accompanied by chronic and sustained inflammation, including M1 microglia activation. This study evaluated the effect of an essential fatty acid (EFA) supplement containing specialized pro-resolving mediators (SPMs), on retinal degeneration and microglia activation in rd10 mice, a model of RP, as well as on LPS-stimulated BV2 cells. The EFA supplement was orally administered to mice from postnatal day (P)9 to P18. At P18, the electrical activity of the retina was examined by electroretinography (ERG) and innate behavior in response to light were measured. Retinal degeneration was studied via histology including the TUNEL assay and microglia immunolabeling. Microglia polarization (M1/M2) was assessed by flow cytometry, qPCR, ELISA and histology. Redox status was analyzed by measuring antioxidant enzymes and markers of oxidative damage. Interestingly, the EFA supplement ameliorated retinal dysfunction and degeneration by improving ERG recording and sensitivity to light, and reducing photoreceptor cell loss. The EFA supplement reduced inflammation and microglia activation attenuating M1 markers as well as inducing a shift to the M2 phenotype in rd10 mouse retinas and LPS-stimulated BV2 cells. It also reduced oxidative stress markers of lipid peroxidation and carbonylation. These findings could open up new therapeutic opportunities based on resolving inflammation with oral supplementation with SPMs such as the EFA supplement.
RESUMO
COVID-19 is a major worldwide health problem because of acute respiratory distress syndrome, and mortality. Several lines of evidence have suggested a relationship between the vitamin D endocrine system and severity of COVID-19. We present a survival study on a retrospective cohort of 15,968 patients, comprising all COVID-19 patients hospitalized in Andalusia between January and November 2020. Based on a central registry of electronic health records (the Andalusian Population Health Database, BPS), prescription of vitamin D or its metabolites within 15-30 days before hospitalization were recorded. The effect of prescription of vitamin D (metabolites) for other indication previous to the hospitalization was studied with respect to patient survival. Kaplan-Meier survival curves and hazard ratios support an association between prescription of these metabolites and patient survival. Such association was stronger for calcifediol (Hazard Ratio, HR = 0.67, with 95% confidence interval, CI, of [0.50-0.91]) than for cholecalciferol (HR = 0.75, with 95% CI of [0.61-0.91]), when prescribed 15 days prior hospitalization. Although the relation is maintained, there is a general decrease of this effect when a longer period of 30 days prior hospitalization is considered (calcifediol HR = 0.73, with 95% CI [0.57-0.95] and cholecalciferol HR = 0.88, with 95% CI [0.75, 1.03]), suggesting that association was stronger when the prescription was closer to the hospitalization.
Assuntos
COVID-19/mortalidade , Calcifediol/uso terapêutico , Vitamina D/uso terapêutico , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Estudos Retrospectivos , Espanha/epidemiologia , Análise de SobrevidaRESUMO
According to the divergent pathway model, cutaneous melanoma comprises a nevogenic group with a propensity to melanocyte proliferation and another one associated with cumulative solar damage (CSD). While characterized clinically and epidemiologically, the differences in the molecular profiles between the groups have remained primarily uninvestigated. This study has used a custom gene panel and bioinformatics tools to investigate the potential molecular differences in a thoroughly characterized cohort of 119 melanoma patients belonging to nevogenic and CSD groups. We found that the nevogenic melanomas had a restricted set of mutations, with the prominently mutated gene being BRAF. The CSD melanomas, in contrast, showed mutations in a diverse group of genes that included NF1, ROS1, GNA11, and RAC1. We thus provide evidence that nevogenic and CSD melanomas constitute different biological entities and highlight the need to explore new targeted therapies.
RESUMO
Genome-scale mechanistic models of pathways are gaining importance for genomic data interpretation because they provide a natural link between genotype measurements (transcriptomics or genomics data) and the phenotype of the cell (its functional behavior). Moreover, mechanistic models can be used to predict the potential effect of interventions, including drug inhibitions. Here, we present the implementation of a mechanistic model of cell signaling for the interpretation of transcriptomic data as an R/Bioconductor package, a Cytoscape plugin and a web tool with enhanced functionality which includes building interpretable predictors, estimation of the effect of perturbations and assessment of the effect of mutations in complex scenarios.
RESUMO
BACKGROUND: Autoimmune diseases are heterogeneous pathologies with difficult diagnosis and few therapeutic options. In the last decade, several omics studies have provided significant insights into the molecular mechanisms of these diseases. Nevertheless, data from different cohorts and pathologies are stored independently in public repositories and a unified resource is imperative to assist researchers in this field. RESULTS: Here, we present Autoimmune Diseases Explorer ( https://adex.genyo.es ), a database that integrates 82 curated transcriptomics and methylation studies covering 5609 samples for some of the most common autoimmune diseases. The database provides, in an easy-to-use environment, advanced data analysis and statistical methods for exploring omics datasets, including meta-analysis, differential expression or pathway analysis. CONCLUSIONS: This is the first omics database focused on autoimmune diseases. This resource incorporates homogeneously processed data to facilitate integrative analyses among studies.
Assuntos
Doenças Autoimunes , Biologia Computacional , Doenças Autoimunes/epidemiologia , Doenças Autoimunes/genética , Bases de Dados Factuais , HumanosRESUMO
Predictive biomarkers of trabectedin represent an unmet need in advanced soft-tissue sarcomas (STS). DNA damage repair (DDR) genes, involved in homologous recombination or nucleotide excision repair, had been previously described as biomarkers of trabectedin resistance or sensitivity, respectively. The majority of these studies only focused on specific factors (ERCC1, ERCC5, and BRCA1) and did not evaluate several other DDR-related genes that could have a relevant role for trabectedin efficacy. In this retrospective translational study, 118 genes involved in DDR were evaluated to determine, by transcriptomics, a predictive gene signature of trabectedin efficacy. A six-gene predictive signature of trabectedin efficacy was built in a series of 139 tumor samples from patients with advanced STS. Patients in the high-risk gene signature group showed a significantly worse progression-free survival compared with patients in the low-risk group (2.1 vs 6.0 months, respectively). Differential gene expression analysis defined new potential predictive biomarkers of trabectedin sensitivity (PARP3 and CCNH) or resistance (DNAJB11 and PARP1). Our study identified a new gene signature that significantly predicts patients with higher probability to respond to treatment with trabectedin. Targeting some genes of this signature emerges as a potential strategy to enhance trabectedin efficacy.