RESUMO
BACKGROUND: COVID-19 vaccines have been critical for protection against severe disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) but gaps remain in our understanding of the immune responses that contribute to controlling subclinical and mild infections. METHODS: Vaccinated, active-duty US military service members were enrolled in a non-interventional, minimal-risk, observational study starting in May, 2021. Clinical data, serum, and saliva samples were collected from study participants and were used to characterise the humoral immune responses to vaccination and to assess its impact on clinical and subclinical infections, as well as virologic outcomes of breakthrough infections (BTI) including viral load and infection duration. FINDINGS: The majority of VIRAMP participants had received the Pfizer COVID-19 vaccine and by January, 2022, N = 149 had a BTI. The median BTI duration (PCR+ days) was 4 days and the interquartile range was 1-8 days. Participants that were nucleocapsid seropositive prior to their BTI had significantly higher levels of binding and functional antibodies to the spike protein, shorter median duration of infections, and lower median peak viral loads compared to seronegative participants. Furthermore, levels of neutralising antibody, ACE2 blocking activity, and spike-specific IgA measured prior to BTI also correlated with the duration of infection. INTERPRETATION: We extended previous findings and demonstrate that a subset of vaccine-induced humoral immune responses, along with nucleocapsid serostatus are associated with control of SARS-CoV-2 breakthrough infections in the upper airways. FUNDING: This work was funded by the DoD Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) in collaboration with the Defense Health Agency (DHA) COVID-19 funding initiative for the VIRAMP study.
Assuntos
COVID-19 , Militares , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Imunidade Humoral , Infecções Irruptivas , Anticorpos Neutralizantes , Anticorpos Antivirais , VacinaçãoRESUMO
OBJECTIVE: Validate the performance characteristics of two analyte specific, laboratory developed tests (LDTs) for the quantification of SARS-CoV-2 subgenomic RNA (sgRNA) and viral load on the Hologic Panther Fusion® using the Open Access functionality. METHODS: Custom-designed primers/probe sets targeting the SARS-CoV-2 Envelope gene (E) and subgenomic E were optimized. A 20-day performance validation following laboratory developed test requirements was conducted to assess assay precision, accuracy, analytical sensitivity/specificity, lower limit of detection and reportable range. RESULTS: Quantitative SARS-CoV-2 sgRNA (LDT-Quant sgRNA) assay, which measures intermediates of replication, and viral load (LDT-Quant VLCoV) assay demonstrated acceptable performance. Both assays were linear with an R2 and slope equal to 0.99 and 1.00, respectively. Assay precision was evaluated between 4-6 Log10 with a maximum CV of 2.6% and 2.5% for LDT-Quant sgRNA and LDT-Quant VLCoV respectively. Using negative or positive SARS-CoV-2 human nasopharyngeal swab samples, both assays were accurate (kappa coefficient of 1.00 and 0.92). Common respiratory flora and other viral pathogens were not detected and did not interfere with the detection or quantification by either assay. Based on 95% detection, the assay LLODs were 729 and 1206 Copies/mL for the sgRNA and VL load LDTs, respectively. CONCLUSION: The LDT-Quant sgRNA and LDT-Quant VLCoV demonstrated good analytical performance. These assays could be further investigated as alternative monitoring assays for viral replication; and thus, medical management in clinical settings which could inform isolation/quarantine requirements.
Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , RNA Subgenômico , Carga Viral , Bioensaio , RNARESUMO
A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.
Assuntos
Infecções por HIV , HIV-1 , Camundongos , Animais , Linfócitos T CD8-Positivos , Centro Germinativo , Anticorpos Anti-HIVRESUMO
Combining diagnostic specimens into pools has been considered as a strategy to augment throughput, decrease turnaround time, and leverage resources. This study utilized a multi-parametric approach to assess optimum pool size, impact of automation, and effect of nucleic acid amplification chemistries on the detection of SARS-CoV-2 RNA in pooled samples for surveillance testing on the Hologic Panther Fusion® System. Dorfman pooled testing was conducted with previously tested SARS-CoV-2 nasopharyngeal samples using Hologic's Aptima® and Panther Fusion® SARS-CoV-2 Emergency Use Authorization assays. A manual workflow was used to generate pool sizes of 5:1 (five samples: one positive, four negative) and 10:1. An automated workflow was used to generate pool sizes of 3:1, 4:1, 5:1, 8:1 and 10:1. The impact of pool size, pooling method, and assay chemistry on sensitivity, specificity, and lower limit of detection (LLOD) was evaluated. Both the Hologic Aptima® and Panther Fusion® SARS-CoV-2 assays demonstrated >85% positive percent agreement between neat testing and pool sizes ≤5:1, satisfying FDA recommendation. Discordant results between neat and pooled testing were more frequent for positive samples with CT>35. Fusion® CT (cycle threshold) values for pooled samples increased as expected for pool sizes of 5:1 (CT increase of 1.92-2.41) and 10:1 (CT increase of 3.03-3.29). The Fusion® assay demonstrated lower LLOD than the Aptima® assay for pooled testing (956 vs 1503 cp/mL, pool size of 5:1). Lowering the cut-off threshold of the Aptima® assay from 560 kRLU (manufacturer's setting) to 350 kRLU improved the assay sensitivity to that of the Fusion® assay for pooled testing. Both Hologic's SARS-CoV-2 assays met the FDA recommended guidelines for percent positive agreement (>85%) for pool sizes ≤5:1. Automated pooling increased test throughput and enabled automated sample tracking while requiring less labor. The Fusion® SARS-CoV-2 assay, which demonstrated a lower LLOD, may be more appropriate for surveillance testing.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Automação , Sensibilidade e EspecificidadeRESUMO
Fc-mediated virus entry has been observed for many viruses, but the characterization of this activity in convalescent plasma against SARS-CoV-2 Variants of Concern (VOC) is undefined. In this study, we evaluated Fc-mediated viral entry (FVE) on FcγRIIa-expressing HEK293 cells in the presence of SARS-CoV-2 convalescent plasma and compared it with SARS-CoV-2 pseudovirus neutralization using ACE2-expressing HEK293 cells. The plasma were collected early in the pandemic from 39 individuals. We observed both neutralization and FVE against the infecting Washington SARS-CoV-2 strain for 31% of plasmas, neutralization, but not FVE for 61% of plasmas, and no neutralization or FVE for 8% of plasmas. Neutralization titer correlated significantly with the plasma dilution at which maximum FVE was observed, indicating Fc-mediated uptake peaked as neutralization potency waned. While total Spike-specific plasma IgG levels were similar between plasma that mediated FVE and those that did not, Spike-specific plasma IgM levels were significantly higher in plasma that did not mediate FVE. Plasma neutralization titers against the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) VOC were significantly lower than titers against the Washington strain, while plasma FVE activity against the VOC was either higher or similar. This is the first report to demonstrate a functional shift in convalescent plasma antibodies from neutralizing and FVE-mediating against the earlier Washington strain, to an activity mediating only FVE and no neutralization activity against the emerging VOC, specifically the Beta (B.1.351) and Gamma (P.1) VOC. It will be important to determine the in vivo relevance of these findings.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/terapia , Células HEK293 , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Soroterapia para COVID-19RESUMO
The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.
RESUMO
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 µg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1. These potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses.
Assuntos
COVID-19 , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Ferritinas , Humanos , Imunidade , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de CoronavírusRESUMO
Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/virologia , Macaca mulatta/imunologia , Nanopartículas/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Ferritinas/química , SARS-CoV-2/metabolismo , Linfócitos T/imunologiaRESUMO
The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine in nonhuman primates (NHPs). High-dose (50 µ g) SpFN vaccine, given twice within a 28 day interval, induced a Th1-biased CD4 T cell helper response and a peak neutralizing antibody geometric mean titer of 52,773 against wild-type virus, with activity against SARS-CoV-1 and minimal decrement against variants of concern. Vaccinated animals mounted an anamnestic response upon high-dose SARS-CoV-2 respiratory challenge that translated into rapid elimination of replicating virus in their upper and lower airways and lung parenchyma. SpFN's potent and broad immunogenicity profile and resulting efficacy in NHPs supports its utility as a candidate platform for SARS-like betacoronaviruses. ONE-SENTENCE SUMMARY: A SARS-CoV-2 Spike protein ferritin nanoparticle vaccine, co-formulated with a liposomal adjuvant, elicits broad neutralizing antibody responses that exceed those observed for other major vaccines and rapidly protects against respiratory infection and disease in the upper and lower airways and lung tissue of nonhuman primates.
RESUMO
Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 µg RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only â¼2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. SIGNIFICANCE STATEMENT: The emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.
RESUMO
The efficacy of ALVAC-based HIV and SIV vaccines in humans and macaques correlates with antibodies to envelope variable region 2 (V2). We show here that vaccine-induced antibodies to SIV variable region 1 (V1) inhibit anti-V2 antibody-mediated cytotoxicity and reverse their ability to block V2 peptide interaction with the α4ß7 integrin. SIV vaccines engineered to delete V1 and favor an α helix, rather than a ß sheet V2 conformation, induced V2-specific ADCC correlating with decreased risk of SIV acquisition. Removal of V1 from the HIV-1 clade A/E A244 envelope resulted in decreased binding to antibodies recognizing V2 in the ß sheet conformation. Thus, deletion of V1 in HIV envelope immunogens may improve antibody responses to V2 virus vulnerability sites and increase the efficacy of HIV vaccine candidates.
RESUMO
Development of liposome-based formulations as vaccine adjuvants has been intimately associated with, and dependent on, and informed by, a fundamental understanding of biochemical and biophysical properties of liposomes themselves. The Walter Reed Army Institute of Research (WRAIR) has a fifty-year history of experience of basic research on liposomes; and development of liposomes as drug carriers; and development of liposomes as adjuvant formulations for vaccines. Uptake of liposomes by phagocytic cells in vitro has served as an excellent model for studying the intracellular trafficking patterns of liposomal antigen. Differential fluorescent labeling of proteins and liposomal lipids, together with the use of inhibitors, has enabled the visualization of physical locations of antigens, peptides, and lipids to elucidate mechanisms underlying the MHC class I and class II pathways in phagocytic APCs. Army Liposome Formulation (ALF) family of vaccine adjuvants, which have been developed and improved since 1986, and which range from nanosize to microsize, are currently being employed in phase 1 studies with different types of candidate vaccines.
Assuntos
Lipossomos , Vacinas , Adjuvantes Imunológicos , Antígenos , LipídeosRESUMO
The membrane proximal external region (MPER) of HIV-1 gp41 is targeted by several neutralizing antibodies (NAbs) and is of interest for vaccine design. In this study, we identified novel MPER peptide mimotopes and evaluated their reactivity with HIV + plasma antibodies to characterize the diversity of the immune responses to MPER during natural infection. We utilized phage display technology to generate novel mimotopes that fit antigen-binding sites of MPER NAbs 4E10, 2F5 and Z13. Plasma antibodies from 10 HIV + patients were mapped by phage immunoprecipitation, to identify unique patient MPER binding profiles that were distinct from, and overlapping with, those of MPER NAbs. 4E10 mimotope binding profiles correlated with plasma neutralization of HIV-2/HIV-1 MPER chimeric virus, and with overall plasma neutralization breadth and potency. When administered as vaccines, 4E10 mimotopes elicited low titer NAb responses in mice. HIV mimotopes may be useful for detailed analysis of plasma antibody specificity.
Assuntos
Epitopos/química , Anticorpos Anti-HIV/biossíntese , Proteína gp41 do Envelope de HIV/química , Infecções por HIV/prevenção & controle , HIV-1/imunologia , HIV-2/imunologia , Vacinas contra a AIDS/administração & dosagem , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Especificidade de Anticorpos , Antígenos Virais/química , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Ligação Competitiva , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Proteína gp41 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-2/efeitos dos fármacos , HIV-2/genética , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunização/métodos , Camundongos , Camundongos Endogâmicos BALB C , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação ProteicaRESUMO
To augment HIV-1 pox-protein vaccine immunogenicity using a next generation adjuvant, a prime-boost strategy of recombinant modified vaccinia virus Ankara and multimeric Env gp145 was evaluated in macaques with either aluminum (alum) or a novel liposomal monophosphoryl lipid A (MPLA) formulation adsorbed to alum, ALFA. Binding antibody responses were robust and comparable between arms, while antibody-dependent neutrophil and monocyte phagocytotic responses were greatly enhanced by ALFA. Per-exposure vaccine efficacy against heterologous tier 2 SHIV mucosal challenge was 90% in ALFA-adjuvanted males (P = 0.002), while alum conferred no protection. Half of the ALFA-adjuvanted males remained uninfected after the full challenge series, which spanned seven months after the last vaccination. Antibody-dependent monocyte and neutrophil phagocytic responses both strongly correlated with protection. Significant sex differences in infection risk were observed, with much lower infection rates in females than males. In humans, MPLA-liposome-alum adjuvanted gp120 also increased HIV-1-specific phagocytic responses relative to alum. Thus, next-generation liposome-based adjuvants can drive vaccine elicited antibody effector activity towards potent phagocytic responses in both macaques and humans and these responses correlate with protection. Future protein vaccination strategies aiming to improve functional humoral responses may benefit from such adjuvants.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Vacinas contra a SAIDS/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/imunologia , Método Duplo-Cego , Feminino , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/imunologia , Adulto JovemRESUMO
Despite anti-retroviral therapy (ART) interventions for HIV+ pregnant mothers, over 43,000 perinatal infections occur yearly. Understanding risk factors that lead to mother-to-child transmission (MTCT) of HIV are critical. We evaluated maternal and infant plasma binding and neutralizing antibody responses in a drug-naïve, CRF01_AE infected MTCT cohort from Thailand to determine associations with transmission risk. Env V3-specific IgG and neutralizing antibody responses were significantly higher in HIV- infants, as compared to HIV+ infants. In fact, infant plasma neutralizing antibodies significantly associated with non-transmission. Conversely, increased maternal Env V3-specific IgG and neutralizing antibody responses were significantly associated with increased transmission risk, after controlling for maternal viral load. Our results highlight the importance of evaluating both maternal and infant humoral immune responses to better understand mechanisms of protection, as selective placental antibody transport may have a role in MTCT. This study further emphasizes the complex role of Env-specific antibodies in MTCT of CRF01_AE HIV.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/imunologia , Adulto , Estudos de Coortes , Feminino , Infecções por HIV/virologia , HIV-1/genética , Humanos , Lactente , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , Masculino , Gravidez , Complicações Infecciosas na Gravidez , Tailândia/epidemiologia , Adulto JovemRESUMO
Introduction: From its earliest days, the US. military has embraced the use of vaccines to fight infectious diseases. The Army Liposome Formulation (ALF) has been a pivotal innovation as a vaccine adjuvant that provides excellent safety and potency and could lead to dual-use military and civilian benefits. For protection of personnel against difficult disease threats found in many areas of the world, Army vaccine scientists have created novel liposome-based vaccine adjuvants.Areas covered: ALF consists of liposomes containing saturated phospholipids, cholesterol, and monophosphoryl lipid A (MPLA) as an immunostimulant. ALF exhibited safety and strong potency in many vaccine clinical trials. Improvements based on ALF include: ALF adsorbed to aluminum hydroxide (ALFA); ALF containing QS21 saponin (ALFQ); and ALFQ adsorbed to aluminum hydroxide (ALFQA). Preclinical safety and efficacy studies with ALF, LFA, ALFQ, and ALFQA are discussed in preparation for upcoming vaccine trials targeting malaria, HIV-1, bacterial diarrhea, and opioid addiction.Expert opinion: The introduction of ALF in the 1980s stimulated commercial interest in vaccines to infectious diseases, and therapeutic vaccines to cancer, and Alzheimer's disease. It is likely that ALF, ALFA, and ALFQ, will provide momentum for new types of modern vaccines with improved efficacy and safety.
Assuntos
Adjuvantes Imunológicos/administração & dosagem , Medicina Militar/história , Vacinas/administração & dosagem , Adjuvantes Imunológicos/história , Animais , História do Século XX , História do Século XXI , Humanos , Lipossomos , Estados Unidos , Vacinas/história , Vacinas/imunologiaRESUMO
In the RV144 HIV-1 phase III trial, vaccine efficacy directly correlated with the magnitude of the variable region 2-specific (V2-specific) IgG antibody response, and in the presence of low plasma IgA levels, with the magnitude of plasma antibody-dependent cellular cytotoxicity. Reenrollment of RV144 vaccinees in the RV305 trial offered the opportunity to define the function, maturation, and persistence of vaccine-induced V2-specific and other mAb responses after boosting. We show that the RV144 vaccine regimen induced persistent V2 and other HIV-1 envelope-specific memory B cell clonal lineages that could be identified throughout the approximately 11-year vaccination period. Subsequent boosts increased somatic hypermutation, a critical requirement for antibody affinity maturation. Characterization of 22 vaccine-induced V2-specific mAbs with epitope specificities distinct from previously characterized RV144 V2-specific mAbs CH58 and CH59 found increased in vitro antibody-mediated effector functions. Thus, when inducing non-neutralizing antibodies, one method by which to improve HIV-1 vaccine efficacy may be through late boosting to diversify the V2-specific response to increase the breadth of antibody-mediated anti-HIV-1 effector functions.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Vacinas contra a AIDS/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Ensaios Clínicos como Assunto , Epitopos/genética , Epitopos/imunologia , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Imunização Secundária , Modelos Moleculares , Mutação , Conformação Proteica , Vacinas Virais , Difração de Raios X , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Prophylactic HIV vaccines must elicit antibodies (Abs) against the virus envelope glycoproteins (Env) to effectively prevent HIV infection. We investigated a vaccine platform that utilizes immune complexes made of Env proteins gp120 and monoclonal Abs (mAbs) against different gp120 epitopes. We previously observed alterations in V3 antigenicity upon formation of certain gp120/mAb complexes and demonstrated the ability of these complexes to modulate the elicitation of V3 Ab responses. However, the effects on the V1V2 domain, an important target for Abs that correlate with vaccine-induced protection against HIV, have not been studied, nor have immune complex vaccines made with non-B subtype Env. This study compared subtypes B (JRFL) and CRF_01.AE (A244) Env gp120 proteins in complex with selected gp120-specific mAbs. Allosteric and antigenic changes were detected on these immune complexes, indicating that gp120/mAb interaction induces alterations on the Env surface that may modify the Env immunogenic properties. To evaluate this idea, mice were immunized with gp120/mAb complexes or their uncomplexed gp120 counterparts. The overall serum IgG titers elicited against gp120 were comparable, but a marked skewing toward V1V2 or V3 was evident and dependent on the gp120 strain and the specificity of the mAb used to form the complexes. Compared with uncomplexed gp120JRFL, gp120JRFL complexed with CD4bs or V1V2 mAbs, but not with C2 or V3 mAbs, elicited V3 Abs of greater titers and breadth, and Abs more capable of neutralizing tier 1 virus. Epitope mapping revealed a shift to a more conserved site in the V3 crown. However, the complexes did not enhance V1V2 Ab response, and the elicited V1V2 Abs were not cross-reactive. This profile contrasts with Ab responses to gp120A244/mAb complexes. Notably, gp120A244/mAb complexes induced higher levels of V1V2 Abs with some cross-reactivity, while also stimulating weak or strain-specific V3 Abs. Sera from gp120A244/mAb complex-immunized animals displayed no measurable virus neutralization but did mediate Ab-dependent cellular phagocytosis, albeit at levels similar to that induced by gp120A244 alone. These data indicate the potential utility of immune complexes as vaccines to shape Ab responses toward or away from Env sites of interest.
Assuntos
Vacinas contra a AIDS/imunologia , Complexo Antígeno-Anticorpo/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Complexo Antígeno-Anticorpo/administração & dosagem , Linhagem Celular , Epitopos/imunologia , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células THP-1RESUMO
Background: In the RV144 trial, human immunodeficiency virus (HIV)-1 gp120 V1V2 antibodies correlated inversely with risk of HIV-1 infection; however, the titers waned quickly. We hypothesized that a more potent adjuvant might enhance the magnitude and durability of V1V2 antibodies. Methods: We examined archived sera from a phase I randomized, double-blind placebo-controlled trial, conducted in HIV-1-uninfected individuals, vaccinated with HIV-1SF-2 rgp120 either adsorbed to aluminum hydroxide (aluminum hydroxide arm) or encapsulated in liposomes containing monophosphoryl lipid A (MPL®) and then adsorbed to aluminum hydroxide (liposomal arm). Results: The median immunoglobulin G antibody titers across weeks 10-112 were higher in the liposomal arm against subtypes B (2- to 16-fold), AE (4- to 8-fold), and C (4- to 16-fold) V1V2 proteins. High titers were maintained even at 10 months after last boost in the liposomal compared with the aluminum hydroxide arm. The antibodies exhibited antibody-dependent cellular cytotoxicity (ADCC) and α4ß7-integrin receptor inhibition-binding functions. Conclusions: Inclusion of 2 adjuvants in the vaccine formulation, aluminum hydroxide, and liposomal MPL®, induced robust, durable, and functional antibodies. Based on the magnitude of antibody responses and the percentage of coiled and ß-sheet in the predicted V2/V3-peptide structure, we speculate that liposomal gp120 was presented in a conformation that favored the induction of robust antibody responses.
Assuntos
Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Lipossomos/química , Adolescente , Adulto , Ensaios Clínicos Fase I como Assunto , Estudos de Coortes , Proteína gp120 do Envelope de HIV/química , Humanos , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Adulto JovemRESUMO
The mucosal tissues of the gut and female reproductive tract (FRT) are susceptible to pathogen infections including bacteria, viruses, and parasites, and are also the targets for immune disorders such as Crohn's disease, inflammatory bowel disease (IBD), and many types of cancers. However, the role of the mucosal immune cells to control these diseases is largely unknown. The limited availability of human mucosal biopsy tissue and the low number of cells that can be isolated from these tissues hampers the characterization of the phenotype and function of human mucosal immune cell subsets. Therefore, human-immune-system humanized mice are surrogate models to investigate the human mucosal immune cell responses during the course of the disease. The current protocols used to harvest the immune cells from the mucosal tissues, however, result in low recovery of cells with poor viability. We have established a novel protocol, which results in a high yield of human lymphocytes with high viability to overcome this issue. The immune cells obtained from a single DRAG mouse by our protocol were sufficient for conducting functional assays and for flow cytometry analyses including phenotypic, exhaustion, and functional panels.