RESUMO
Sustainable agrifood systems are needed to provide safe and nutritious food for the growing world's population. To improve sustainability, transforming linear policies and practices in agrifood systems into circularity will be critical, with food safety considerations key for the success of this shift. This review provides a synthesis of the current and emerging risks, data gaps, and opportunities for food safety in agrifood initiatives aiming to advance circular economy models.
RESUMO
Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.
Assuntos
Disfunção Cognitiva , Microglia , PPAR gama , Pioglitazona , Animais , Masculino , Camundongos , Concussão Encefálica/metabolismo , Concussão Encefálica/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pioglitazona/farmacologia , Pioglitazona/uso terapêutico , PPAR gama/metabolismoRESUMO
This research examined the impact of aerobic exercise intensity and dose on acute post-exercise cerebral shear stress and blood flow. Fourteen young adults (27 ± 5 years of age, eight females) completed a maximal oxygen uptake ( V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ ) treadmill test followed by three randomized study visits: treadmill exercise at 30% of V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ for 30 min, 70% of V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ for 30 min and 70% of V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ for a duration that resulted in caloric expenditure equal to that in the 30% V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ visit (EqEE). A venous blood draw and internal carotid artery (ICA) ultrasound were collected before and immediately following exercise. ICA diameter and blood velocity were determined using automated edge detection software, and blood flow was calculated. Using measures of blood viscosity, shear stress was calculated. Aerobic exercise increased ICA shear stress (time: P = 0.005, condition: P = 0.012) and the increase was greater following exercise at 70% V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆4.1 ± 3.5 dyn/cm2) compared with 30% V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆1.1 ± 1.9 dyn/cm2; P = 0.041). ICA blood flow remained elevated following exercise (time: P = 0.002, condition: P = 0.010) with greater increases after 70% V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (Δ268 ± 150 mL/min) compared with 30% V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ (∆125 ± 149 mL/min; P = 0.041) or 70% V Ì O 2 max ${{\dot{V}}_{{{{\mathrm{O}}}_2}\max }}$ EqEE (∆127 ± 177 mL/min; P = 0.004). Therefore, aerobic exercise resulted in both intensity- and dose-dependent effects on acute post-exercise ICA blood flow whereby vigorous intensity exercise provoked a larger increase in ICA blood flow compared to light intensity exercise when performed at a higher dose.
Assuntos
Circulação Cerebrovascular , Teste de Esforço , Exercício Físico , Consumo de Oxigênio , Humanos , Feminino , Masculino , Adulto , Exercício Físico/fisiologia , Circulação Cerebrovascular/fisiologia , Consumo de Oxigênio/fisiologia , Adulto Jovem , Teste de Esforço/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Estresse MecânicoRESUMO
Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (â¼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.
Assuntos
Glicogênio Sintase Quinase 3 beta , Neoplasias , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Humanos , Criança , Adolescente , Neoplasias/tratamento farmacológico , Neoplasias/genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de MTOR/uso terapêutico , Inibidores de MTOR/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
PURPOSE: The aim of the Innovative Therapies for Children with Cancer (ITCC) consortium is to improve access to novel therapies for children and adolescents with cancer. The evolution of the ITCC clinical trial portfolio since 2003 was reviewed. METHODS: All ITCC-labeled phase I/II trials opened between January 1, 2003 and February 3, 2018 were analyzed in two periods (2003-2010 and 2011-2018), and data were extracted from the ITCC database, regulatory agencies' registries, and publications. RESULTS: Sixty-one trials (62% industry-sponsored) enrolled 3,198 patients. The number of trials in the second period increased by almost 300% (16 v 45). All biomarker-driven trials (n = 14) were conducted in the second period. The use of rolling six and model-based designs increased (1 of 9, 11% v 21 of 31, 68%), and that of 3 + 3 designs decreased (5 of 9, 55% v 5 of 31, 16%; P = .014). The proportion of studies evaluating chemotherapeutics only decreased (5 of 16, 31% v 4 of 45, 9%), the proportion of single-agent targeted therapies did not change (9 of 16, 56.2% v 24 of 45, 53.3%), the proportion of combination targeted therapies trials increased (2 of 16, 12%, v 17 of 45, 38%), the proportion of randomized phase II trials increased (1 of 7, 14% v 8 of 14, 57%). More trials were part of a pediatric investigation plan in the second period (4 of 16, 25% v 21 of 45, 46%). The median time for Ethics Committees' approvals was 1.7 times longer for academic compared with industry-sponsored trials. CONCLUSION: This study reports a shift in the paradigm of early drug development for childhood cancers, with more biologically relevant targets evaluated in biomarker-driven trials or in combination with other therapies and with more model-based or randomized designs and a greater focus on fulfilling regulatory requirements. Improvement of trial setup and recruitment could increase the number of patients benefiting from novel agents.
Assuntos
Desenvolvimento de Medicamentos , Neoplasias , Humanos , Criança , Neoplasias/tratamento farmacológico , Adolescente , Ensaios Clínicos Fase II como Assunto , Antineoplásicos/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Terapias em Estudo , Projetos de PesquisaRESUMO
Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.
Assuntos
Aquaporina 4 , Astrócitos , Transportador 2 de Aminoácido Excitatório , Camundongos Transgênicos , Tauopatias , Proteínas tau , Animais , Humanos , Masculino , Camundongos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Astrócitos/metabolismo , Astrócitos/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/biossíntese , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/genéticaRESUMO
Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.
Assuntos
Células Endoteliais , Ovário , Feminino , Animais , Ovário/metabolismo , Células Endoteliais/metabolismo , Neurotensina/metabolismo , Junções Aderentes/metabolismo , Permeabilidade Capilar , Caderinas/genética , Caderinas/metabolismo , Macaca/metabolismo , Permeabilidade , Endotélio Vascular/metabolismo , Mamíferos/metabolismoRESUMO
Despite decades of research, the influence of climate on the export of dissolved organic carbon (DOC) from soil remains poorly constrained, adding uncertainty to global carbon models. The limited temporal range of contemporary monitoring data, ongoing climate reorganisation and confounding anthropogenic activities muddy the waters further. Here, we reconstruct DOC leaching over the last ~14,000 years using alpine environmental archives (two speleothems and one lake sediment core) across 4° of latitude from Te Waipounamu/South Island of Aotearoa New Zealand. We selected broadly comparable palaeoenvironmental archives in mountainous catchments, free of anthropogenically-induced landscape changes prior to ~1200 C.E. We show that warmer temperatures resulted in increased allochthonous DOC export through the Holocene, most notably during the Holocene Climatic Optimum (HCO), which was some 1.5-2.5 °C warmer than the late pre-industrial period-then decreased during the cooler mid-Holocene. We propose that temperature exerted the key control on the observed doubling to tripling of soil DOC export during the HCO, presumably via temperature-mediated changes in vegetative soil C inputs and microbial degradation rates. Future warming may accelerate DOC export from mountainous catchments, with implications for the global carbon cycle and water quality.
RESUMO
Repetitive mild traumatic brain injuries (r-mTBI) sustained in the military or contact sports have been associated with the accumulation of extracellular tau in the brain, which may contribute to the pathogenesis of neurodegenerative tauopathies. The expression of the apolipoprotein E4 (apoE4) isoform has been associated with higher levels of tau in the brain, and worse clinical outcomes after r-mTBI, though the influence of apoE genotype on extracellular tau dynamics in the brain is poorly understood. We recently demonstrated that extracellular tau can be eliminated across blood-brain barrier (BBB), which is progressively impaired following r-mTBI. The current studies investigated the influence of repetitive mild TBI (r-mTBI) and apoE genotype on the elimination of extracellular solutes from the brain. Following intracortical injection of biotin-labeled tau into humanized apoE-Tr mice, the levels of exogenous tau residing in the brain of apoE4 mice were elevated compared to other isoforms, indicating reduced tau elimination. Additionally, we found exposure to r-mTBI increased tau residence in apoE2 mice, similar to our observations in E2FAD animals. Each of these findings may be the result of diminished tau efflux via LRP1 at the BBB, as LRP1 inhibition significantly reduced tau uptake in endothelial cells and decreased tau transit across an in vitro model of the BBB (basolateral-to-apical). Notably, we showed that injury and apoE status, (particularly apoE4) resulted in chronic alterations in BBB integrity, pericyte coverage, and AQP4 polarization. These aberrations coincided with an atypical reactive astrocytic gene signature indicative of diminished CSF-ISF exchange. Our work found that CSF movement was reduced in the chronic phase following r-mTBI (>18 months post injury) across all apoE genotypes. In summary, we show that apoE genotype strongly influences cerebrovascular homeostasis, which can lead to age-dependent deficiencies in the elimination of toxic proteins from the brain, like tau, particularly in the aftermath of head trauma.
Assuntos
Apolipoproteína E4 , Concussão Encefálica , Camundongos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Camundongos Transgênicos , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Concussão Encefálica/metabolismoRESUMO
PURPOSE: Outcomes for children with relapsed and refractory high-risk neuroblastoma (RR-HRNB) remain dismal. The BEACON Neuroblastoma trial (EudraCT 2012-000072-42) evaluated three backbone chemotherapy regimens and the addition of the antiangiogenic agent bevacizumab (B). MATERIALS AND METHODS: Patients age 1-21 years with RR-HRNB with adequate organ function and performance status were randomly assigned in a 3 × 2 factorial design to temozolomide (T), irinotecan-temozolomide (IT), or topotecan-temozolomide (TTo) with or without B. The primary end point was best overall response (complete or partial) rate (ORR) during the first six courses, by RECIST or International Neuroblastoma Response Criteria for patients with measurable or evaluable disease, respectively. Safety, progression-free survival (PFS), and overall survival (OS) time were secondary end points. RESULTS: One hundred sixty patients with RR-HRNB were included. For B random assignment (n = 160), the ORR was 26% (95% CI, 17 to 37) with B and 18% (95% CI, 10 to 28) without B (risk ratio [RR], 1.52 [95% CI, 0.83 to 2.77]; P = .17). Adjusted hazard ratio for PFS and OS were 0.89 (95% CI, 0.63 to 1.27) and 1.01 (95% CI, 0.70 to 1.45), respectively. For irinotecan ([I]; n = 121) and topotecan (n = 60) random assignments, RRs for ORR were 0.94 and 1.22, respectively. A potential interaction between I and B was identified. For patients in the bevacizumab-irinotecan-temozolomide (BIT) arm, the ORR was 23% (95% CI, 10 to 42), and the 1-year PFS estimate was 0.67 (95% CI, 0.47 to 0.80). CONCLUSION: The addition of B met protocol-defined success criteria for ORR and appeared to improve PFS. Within this phase II trial, BIT showed signals of antitumor activity with acceptable tolerability. Future trials will confirm these results in the chemoimmunotherapy era.
Assuntos
Neuroblastoma , Topotecan , Criança , Humanos , Lactente , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Temozolomida/uso terapêutico , Irinotecano/uso terapêutico , Topotecan/efeitos adversos , Bevacizumab/efeitos adversos , Dacarbazina/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neuroblastoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Better therapies for childhood cancer remain an unmet need to improve the dismal prognosis of certain malignancies and to reduce the burden of toxicity. Rescuing discontinued or shelved drugs for children, adolescents, and young adults is a strategy to identify new uses for approved or investigational medicines outside the scope of their original medical indication. Our proposed multistakeholder consensus focuses on the development of innovative, patent-protected targeted agents, sourced from previously shelved or discontinued programs that have the potential to provide significant benefit to underserved patient populations, with unmet medical needs. There are several challenges to continuing/rescuing drugs for pediatric oncology development, which include the lack of information for decision making, corporate strategy considerations underlying the decision to invest in pediatric development, and the contracting and technology transfer complexities required to enable divestment and subsequent development. The multistakeholder approach for drug development has the advantage of conveying a consensus among academia, patient advocates, and importantly industry itself. We propose three areas of action to facilitate rescuing potentially beneficial drugs for children and adolescents with cancer: (i) initiatives to provide information to companies considering developing these drugs and a standards framework; (ii) incentives both in Europe and in the United States to encourage companies to develop pediatric-only drugs, with the reform of the EU Pharmaceutical Legislation posing an important opportunity; and (iii) communication of the issues to all stakeholders. Ultimately, this will benefit children and adolescents with cancer.
Assuntos
Antineoplásicos , Neoplasias , Adolescente , Criança , Estados Unidos , Humanos , Consenso , Neoplasias/tratamento farmacológico , Oncologia , Antineoplásicos/efeitos adversos , Desenvolvimento de MedicamentosRESUMO
In a landscape of an increasing number of products and histology and age agnostic trials for rare patient cancer, prioritization of products is required. Paediatric Strategy Forums, organized by ACCELERATE and the European Medicines Agency with participation of the US Food and Drug Administration, are multi-stakeholder meetings that share information to best inform pediatric drug development strategies and subsequent clinical trial decisions. Academia, industry, regulators, and patient advocates are equal members, with patient advocates highlighting unmet needs of children and adolescents with cancer. The 11 Paediatric Strategy Forums since 2017 have made specific and general conclusions to accelerate drug development. Conclusions on product prioritization meetings, as well as global master protocols, have been outputs of these meetings. Forums have provided information for regulatory discussions and decisions by industry to facilitate development of high-priority products; for example, 62% of high-priority assets (agreed at a Forum) in contrast to 5% of those assets not considered high priority have been the subject of a Paediatric Investigational Plan or Written Request. Where there are multiple products of the same class, Forums have recommended a focused and sequential approach. Class prioritization resulted in an increase in waivers for non-prioritized B-cell products (44% to 75%) and a decrease in monotherapy trials, proposed in Paediatric Investigation Plans (PIP) submissions of checkpoint inhibitors from 53% to 19%. Strategy Forums could play a role in defining unmet medical needs. Multi-stakeholder forums, such as the Paediatric Strategy Forum, serve as a model to improve collaboration in the oncology drug development paradigm.
Assuntos
Desenvolvimento de Medicamentos , Neoplasias , Adolescente , Criança , Humanos , Neoplasias/tratamento farmacológico , Oncologia/métodos , Linfócitos BRESUMO
OBJECTIVE: Prehospital clinicians need a practical means of providing adequate preoxygenation prior to intubation. A bag-valve-mask (BVM) can be used for preoxygenation in perfect conditions but is likely to fail in emergency settings. For this reason, many airway experts have moved away from using BVM for preoxygenation and instead suggest using a nonrebreather (NRB) mask with flush rate oxygen.Literature on preoxygenation has suggested that a NRB mask delivering flush rate oxygen (on a 15 L/min O2 regulator, maximum flow, â¼50 L/min) is noninferior to BVM at 15 L/min held with a tight seal. However, in the prehospital setting, where emergency airway management success varies, preoxygenation techniques have not been deeply explored. Our study seeks to determine whether preoxygenation can be optimally performed with NRB at flush rate oxygen. METHODS: We performed a crossover trial using healthy volunteers. Subjects underwent 3-min trials of preoxygenation with NRB mask at 25 L/min oxygen delivered from a portable tank, NRB at flush rate oxygen from a portable tank, NRB with flush rate oxygen from an onboard ambulance tank, and BVM with flush rate oxygen from an onboard ambulance tank. The primary outcome was the fraction of expired oxygen (FeO2). We compared the FeO2 of the BVM-flush to other study groups, using a noninferiority margin of 10%. RESULTS: We enrolled 30 subjects. Mean FeO2 values for NRB-25, NRB-flush ambulance, NRB-flush portable, and BVM-flush were 63% (95% confidence interval [CI] 58-68%), 74% (95%, CI 70-78%), 78% (95%, CI 74-83%), and 80% (95%, CI 75-84%), respectively. FeO2 values for NRB-flush on both portable tank and ambulance oxygen were noninferior to BVM-flush on the ambulance oxygen system (FeO2 differences of 1%, 95% CI -3% to 6%; and 6%, 95% CI 1-10%). FeO2 for the NRB-25 group was inferior to BVM-flush (FeO2 difference 16%, 95% CI 12-21%). CONCLUSIONS: Among healthy volunteers, flush rate preoxygenation using NRB masks is noninferior to BVM using either a portable oxygen tank or ambulance oxygen. This is significant because preoxygenation using NRB masks with flush rate oxygen presents a simpler alternative to the use of BVMs. Preoxygenation using NRB masks at 25 L/min from a portable tank is inferior to BVM at flush rate.
Assuntos
Serviços Médicos de Emergência , Máscaras , Humanos , Manuseio das Vias Aéreas/métodos , Oxigênio , Respiração Artificial/métodos , Estudos Cross-OverRESUMO
The island of St Helena played a crucial role in the suppression of the transatlantic slave trade. Strategically located in the middle of the South Atlantic, it served as a staging post for the Royal Navy and reception point for enslaved Africans who had been "liberated" from slave ships intercepted by the British. In total, St Helena received approximately 27,000 liberated Africans between 1840 and 1867. Written sources suggest that the majority of these individuals came from West Central Africa, but their precise origins are unknown. Here, we report the results of ancient DNA analyses that we conducted as part of a wider effort to commemorate St Helena's liberated Africans and to restore knowledge of their lives and experiences. We generated partial genomes (0.1-0.5×) for 20 individuals whose remains had been recovered during archaeological excavations on the island. We compared their genomes with genotype data for over 3,000 present-day individuals from 90 populations across sub-Saharan Africa and conclude that the individuals most likely originated from different source populations within the general area between northern Angola and Gabon. We also find that the majority (17/20) of the individuals were male, supporting a well-documented sex bias in the latter phase of the transatlantic slave trade. The study expands our understanding of St Helena's liberated African community and illustrates how ancient DNA analyses can be used to investigate the origins and identities of individuals whose lives were bound up in the story of slavery and its abolition.
Assuntos
População Africana , Pessoas Escravizadas , Humanos , Feminino , Masculino , DNA Antigo , População Negra/genética , GenótipoRESUMO
DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.
Assuntos
Antineoplásicos , Neuroblastoma , Estados Unidos , Adulto , Humanos , Criança , Adolescente , Antineoplásicos/uso terapêutico , Proteína BRCA1 , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , United States Food and Drug Administration , Estudos Retrospectivos , Proteína BRCA2 , Neuroblastoma/tratamento farmacológico , Biomarcadores , Dano ao DNA , Proteínas de Membrana , Proteínas Tirosina Quinases , Proteínas Serina-Treonina QuinasesRESUMO
Traumatic optic neuropathy (TON) is a condition in which acute injury to the optic nerve from direct or indirect trauma results in vision loss. The most common cause of TON is indirect injury to the optic nerve caused by concussive forces that are transmitted to the optic nerve. TON occurs in up to 5% of closed-head trauma patients and there is currently no known effective treatment. One potential treatment option for TON is ST266, a cell-free biological solution containing the secretome of amnion-derived multipotent progenitor (AMP) cells. We investigated the efficacy of intranasal ST266 in a mouse model of TON induced by blunt head trauma. Injured mice treated with a 10-day regimen of ST266 showed an improvement in spatial memory and learning, a significant preservation of retinal ganglion cells, and a decrease in neuropathological markers in the optic nerve, optic tract, and dorsal lateral geniculate nucleus. ST266 treatment effectively downregulated the NLRP3 inflammasome-mediated neuroinflammation pathway after blunt trauma. Overall, treatment with ST266 was shown to improve functional and pathological outcomes in a mouse model of TON, warranting future exploration of ST266 as a cell-free therapeutic candidate for testing in all optic neuropathies.
RESUMO
Introduction: Age-related changes in cerebral hemodynamics are controversial and discrepancies may be due to experimental techniques. As such, the purpose of this study was to compare cerebral hemodynamics measurements of the middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD) and four-dimensional flow MRI (4D flow MRI). Methods: Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants underwent two randomized study visits to evaluate hemodynamics at baseline (normocapnia) and in response to stepped hypercapnia (4% CO2, and 6% CO2) using TCD and 4D flow MRI. Cerebral hemodynamic measures included MCA velocity, MCA flow, cerebral pulsatility index (PI) and cerebrovascular reactivity to hypercapnia. MCA flow was only assessed using 4D flow MRI. Results: MCA velocity between the TCD and 4D flow MRI methods was positively correlated across the normocapnia and hypercapnia conditions (r = 0.262; p = 0.004). Additionally, cerebral PI was significantly correlated between TCD and 4D flow MRI across the conditions (r = 0.236; p = 0.010). However, there was no significant association between MCA velocity using TCD and MCA flow using 4D flow MRI across the conditions (r = 0.079; p = 0.397). When age-associated differences in cerebrovascular reactivity using conductance were compared using both methodologies, cerebrovascular reactivity was greater in young adults compared to older adults when using 4D flow MRI (2.11 ± 1.68 mL/min/mmHg/mmHg vs. 0.78 ± 1.68 mL/min/mmHg/mmHg; p = 0.019), but not with TCD (0.88 ± 1.01 cm/s/mmHg/mmHg vs. 0.68 ± 0.94 cm/s/mmHg/mmHg; p = 0.513). Conclusion: Our results demonstrated good agreement between the methods at measuring MCA velocity during normocapnia and in response to hypercapnia, but MCA velocity and MCA flow were not related. In addition, measurements using 4D flow MRI revealed effects of aging on cerebral hemodynamics that were not apparent using TCD.
RESUMO
NEW FINDINGS: What is the central question of this study? What is the relationship between prostacyclin and cerebrovascular reactivity to hypercapnia before and after administration of a cyclooxygenase inhibitor, indomethacin, in healthy young and older adults? What is the main finding and importance? Serum prostacyclin was not related to cerebrovascular reactivity to hypercapnia before or after administration of indomethacin. However, in older adults, serum prostacyclin was related to the magnitude of change in cerebrovascular reactivity from before to after indomethacin administration. This suggests that older adults with higher serum prostacyclin may rely more on cyclooxygenase products to mediate cerebrovascular reactivity. ABSTRACT: Platelet activation may contribute to age-related cerebrovascular dysfunction by interacting with the endothelial cells that regulate the response to vasodilatory stimuli. This study evaluated the relationship between a platelet inhibitor, prostacyclin, and cerebrovascular reactivity (CVR) in healthy young (n = 35; 25 ± 4 years; 17 women, 18 men) and older (n = 12; 62 ± 2 years; 8 women, 4 men) adults, who were not daily aspirin users, before and after cyclooxygenase inhibition. Prostacyclin was determined by levels of 6-keto-prostaglandin F1α (6-keto PGF1α) in the blood. CVR was assessed by measuring the middle cerebral artery blood velocity response to hypercapnia using transcranial Doppler ultrasound before (CON) and 90 min after cyclooxygenase inhibition with indomethacin (INDO). In young adults, there were no associations between prostacyclin and middle cerebral artery CVR during CON (r = -0.14, P = 0.415) or INDO (r = 0.27, P = 0.118). In older adults, associations between prostacyclin and middle cerebral artery CVR during CON (r = 0.53, P = 0.075) or INDO (r = -0.45, P = 0.136) did not reach the threshold for significance. We also evaluated the relationship between prostacyclin and the change in CVR between conditions (ΔCVR). We found no association between ΔCVR and prostacyclin in young adults (r = 0.27, P = 0.110); however, in older adults, those with higher baseline prostacyclin levels demonstrated significantly greater ΔCVR (r = -0.74, P = 0.005). In conclusion, older adults with higher serum prostacyclin, a platelet inhibitor, may rely more on cyclooxygenase products for cerebrovascular reactivity to hypercapnia.