Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(50): eabn7983, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525493

RESUMO

Inflammatory breast cancer (IBC), the most aggressive breast cancer subtype, is driven by an immunosuppressive tumor microenvironment (TME). Current treatments for IBC have limited efficacy. In a clinical trial (NCT01036087), an anti-EGFR antibody combined with neoadjuvant chemotherapy produced the highest pathological complete response rate ever reported in patients with IBC having triple-negative receptor status. We determined the molecular and immunological mechanisms behind this superior clinical outcome. Using novel humanized IBC mouse models, we discovered that EGFR-targeted therapy remodels the IBC TME by increasing cytotoxic T cells and reducing immunosuppressive regulatory T cells and M2 macrophages. These changes were due to diminishing immunosuppressive chemokine expression regulated by transcription factor EGR1. We also showed that induction of an immunoactive IBC TME by an anti-EGFR antibody improved the antitumor efficacy of an anti-PD-L1 antibody. Our findings lay the foundation for clinical trials evaluating EGFR-targeted therapy combined with immune checkpoint inhibitors in patients with cancer.


Assuntos
Neoplasias Inflamatórias Mamárias , Animais , Camundongos , Receptores ErbB , Neoplasias Inflamatórias Mamárias/tratamento farmacológico , Neoplasias Inflamatórias Mamárias/metabolismo , Neoplasias Inflamatórias Mamárias/patologia , Terapia Neoadjuvante , Microambiente Tumoral , Ensaios Clínicos como Assunto , Feminino
3.
Biomedicines ; 9(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34680527

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous group of estrogen, progesterone, and HER2-negative breast cancers with poor clinical outcomes. The imipridone ONC201 is a G-protein-coupled dopamine receptor D2 modulator and an allosteric agonist of the mitochondrial protease caseinolytic protease P(ClpP), which induces apoptosis. Here, we aimed to develop a novel ONC201-based combination therapy targeting TNBC. We performed a reverse-phase protein array analysis of ONC201-treated/-untreated and -sensitive/-resistant cell lines to identify potential predictive biomarkers. A principal component analysis using measured protein expression levels, the apoptosis score (AS), and heatmaps of all the measured protein and AS-related protein expression levels did not show a clear correlation between the expression levels of a specific protein and ONC201 efficacy. Three-dimensional RNA interference kinome-wide library screening revealed the MAPK and PI3K/Akt pathways as potential synergistic therapeutic partners. The combination with the MEK inhibitor trametinib successfully inhibited the growth of both ONC201-sensitive/-resistant TNBC cell lines. The baseline ClpP level correlated with the efficacy of single-agent ONC201. Single and combination therapy increased caspase 3/7 activity. The predictive biomarkers and a detailed mechanism of synergy beyond an induction of caspase activation should be tested for translation into future studies.

4.
Biomedicines ; 9(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203351

RESUMO

Human epidermal growth factor receptor (EGFR) 2 (HER2) is overexpressed/amplified in about 25% of all breast cancers, and EGFR is overexpressed in up to 76% and amplified in up to 24% of triple-negative breast cancers (TNBC). Here, we aimed to identify inhibitors that may enhance the anti-tumor activity of neratinib for HER2+ breast cancer and TNBC. By conducting a non-biased high-throughput RNA interference screening, we identified PI3K/AKT/mTOR and MAPK as two potential inhibitory synergistic canonical pathways. We confirmed that everolimus (mTOR inhibitor) and trametinib (MEK inhibitor) enhances combinatorial anti-proliferative effects with neratinib under anchorage-independent growth conditions (p < 0.05). Compared to single agent neratinib, the combination therapies significantly enhanced tumor growth inhibition in both SUM190 HER2+ breast cancer (neratinib plus everolimus, 77%; neratinib plus trametinib, 77%; p < 0.0001) and SUM149 TNBC (neratinib plus everolimus, 71%; neratinib plus trametinib, 81%; p < 0.0001) xenograft models. Compared to single-agent neratinib, everolimus, or trametinib, both everolimus plus neratinib and trametinib plus neratinib significantly suppressed proliferation marker Ki67 and enhanced antitumor efficacy by activating the apoptosis pathway shown by increased Bim and cleaved-PARP expression. Taken together, our data justify new neratinib-based combinations for both HER2+ breast cancer and TNBC.

5.
Mol Cancer Ther ; 20(2): 296-306, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323457

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subgroup of breast cancer, and patients with TNBC have few therapeutic options. Apoptosis resistance is a hallmark of human cancer, and apoptosis regulators have been targeted for drug development for cancer treatment. One class of apoptosis regulators is the inhibitors of apoptosis proteins (IAPs). Dysregulated IAP expression has been reported in many cancers, including breast cancer, and has been shown to be responsible for resistance to chemotherapy. Therefore, IAPs have become attractive molecular targets for cancer treatment. Here, we first investigated the antitumor efficacy of birinapant (TL32711), a biindole-based bivalent mimetic of second mitochondria-derived activator of caspases (SMACs), in TNBC. We found that birinapant as a single agent has differential antiproliferation effects in TNBC cells. We next assessed whether birinapant has a synergistic effect with commonly used anticancer drugs, including entinostat (class I histone deacetylase inhibitor), cisplatin, paclitaxel, voxtalisib (PI3K inhibitor), dasatinib (Src inhibitor), erlotinib (EGFR inhibitor), and gemcitabine, in TNBC. Among these tested drugs, gemcitabine showed a strong synergistic effect with birinapant. Birinapant significantly enhanced the antitumor activity of gemcitabine in TNBC both in vitro and in xenograft mouse models through activation of the intrinsic apoptosis pathway via degradation of cIAP2 and XIAP, leading to apoptotic cell death. Our findings demonstrate the therapeutic potential of birinapant to enhance the antitumor efficacy of gemcitabine in TNBC by targeting the IAP family of proteins.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Dipeptídeos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Indóis/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Dipeptídeos/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Indóis/farmacologia , Camundongos , Camundongos Nus , Neoplasias de Mama Triplo Negativas , Gencitabina
6.
Mol Ther Oncolytics ; 18: 579-586, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995482

RESUMO

Adipose stromal cells (ASCs) recruited by tumors contribute to the population of cancer-associated fibroblasts. ASCs have been reported to induce tumor growth and chemotherapy resistance. The effect of ASCs on metastasis has not been explored. Here, we investigated the role of ASCs in cancer aggressiveness and tested them as a therapy target. We show that ASCs promote the epithelial-mesenchymal transition and invasiveness of triple-negative breast cancer cells. In human cell lines derived from various types of breast tumors, ASCs suppressed cytotoxicity of cisplatin and paclitaxel. D-CAN, a proapoptotic peptide targeting ASC, suppressed spontaneous breast cancer lung metastases in a mouse allograft model when combined with cisplatin. Moreover, in a human breast cancer xenograft model, treatment with D-CAN alone was sufficient to suppress lung metastases. This study improves our understanding of how tumor stromal cells recruited from fat tissue stimulate carcinoma progression to chemotherapy resistance/metastasis and outlines a new approach to combination cancer treatment.

7.
PLoS One ; 15(4): e0231953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353087

RESUMO

The original algorithm that classified triple-negative breast cancer (TNBC) into six subtypes has recently been revised. The revised algorithm (TNBCtype-IM) classifies TNBC into five subtypes and a modifier based on immunological (IM) signatures. The molecular signature may differ between cancer cells in vitro and their respective tumor xenografts. We identified cell lines with concordant molecular subtypes regardless of classification algorithm or analysis of cells in vitro or in vivo, to establish a panel of clinically relevant molecularly stable TNBC models for translational research. Gene expression data were used to classify TNBC cell lines using the original and the revised algorithms. Tumor xenografts were established from 17 cell lines and subjected to gene expression profiling with the original 2188-gene algorithm TNBCtype and the revised 101-gene algorithm TNBCtype-IM. A total of six cell lines (SUM149PT (BL2), HCC1806 (BL2), SUM149PT (BL2), BT549 (M), MDA-MB-453 (LAR), and HCC2157 (BL1)) maintained their subtype classification between in vitro and tumor xenograft analyses across both algorithms. For TNBC molecular classification-guided translational research, we recommend using these TNBC cell lines with stable molecular subtypes.


Assuntos
Pesquisa Translacional Biomédica , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Camundongos
8.
Breast Cancer Res Treat ; 176(1): 251, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982934

RESUMO

Unfortunately in the original publication of the article, the author's funding support has been mentioned incorrectly. The correct funding statement should read as "This work was supported by the Morgan Welch Inflammatory Breast Cancer Research Program, the State of Texas Rare and Aggressive Breast Cancer Research Program, MD Anderson's Cancer Center Support Grant (P30CA016672, used the Characterized Cell Line Core Facility and Flow Cytometry and Cellular Imaging Facility), and Spirita Oncology, LLC."The first affiliations was incorrect in the original article. The correct information is given below.

9.
Breast Cancer Res Treat ; 175(2): 339-351, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30826934

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) lacks the receptor targets estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, and thus, it does not respond to receptor-targeted treatments. TNBC has higher recurrence, metastasis, and mortality rates than other subtypes of breast cancer. Mounting data suggest that the MAPK (also known as RAS-RAF-MEK-ERK) pathway is an important therapeutic target in TNBC. METHODS: To evaluate anti-tumor and anti-metastasis efficacy of E6201, we used cell proliferation assay, soft agar assay, cell cycle assay, Annexin V staining assay, immunoblotting analysis, immunohistochemistry, migration assay, invasion assay, mammary fat pad xenograft, and experimental and spontaneous metastasis xenograft models. We also evaluated the anti-tumor efficacy of E6201 plus CDK4/6 inhibitor, mTOR inhibitor, or ATR inhibitor. RESULTS: E6201 inhibited TNBC cell colony formation, migration, and invasion in a dose-dependent manner. E6201 induced G1 cell cycle arrest and apoptosis. E6201 inhibited TNBC xenograft growth and inhibited TNBC lung metastasis and improved mouse survival in experimental metastasis and spontaneous metastasis assays. Immunohistochemical staining demonstrated that E6201 decreased the metastatic burden in the lung and decreased phosphorylated ERK expression in a dose-dependent manner. Combination of E6201 with CDK4/6 inhibitor or mTOR inhibitor enhanced E6201's in vitro anti-tumor efficacy. CONCLUSION: These results indicate that E6201 exhibits anti-tumor efficacy against TNBC in vitro and anti-metastasis efficacy against TNBC in vivo. These results provide a rationale for further clinical development of E6201 as a MAPK-pathway-targeted therapy for TNBC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Lactonas/farmacologia , MAP Quinase Quinase 1/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Feminino , Xenoenxertos , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , Camundongos , Metástase Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA