Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Microbiome ; 7(1): 4, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30611307

RESUMO

AbstractFollowing publication of the original article [1], the author reported an error in Fig. 3.

2.
Microbiome ; 6(1): 225, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558682

RESUMO

BACKGROUND: Utricularia are rootless aquatic carnivorous plants which have recently attracted the attention of researchers due to the peculiarities of their miniaturized genomes. Here, we focus on a novel aspect of Utricularia ecophysiology-the interactions with and within the complex communities of microorganisms colonizing their traps and external surfaces. RESULTS: Bacteria, fungi, algae, and protozoa inhabit the miniature ecosystem of the Utricularia trap lumen and are involved in the regeneration of nutrients from complex organic matter. By combining molecular methods, microscopy, and other approaches to assess the trap-associated microbial community structure, diversity, function, as well as the nutrient turn-over potential of bacterivory, we gained insight into the nutrient acquisition strategies of the Utricularia hosts. CONCLUSIONS: We conclude that Utricularia traps can, in terms of their ecophysiological function, be compared to microbial cultivators or farms, which center around complex microbial consortia acting synergistically to convert complex organic matter, often of algal origin, into a source of utilizable nutrients for the plants.


Assuntos
Bactérias/classificação , Fungos/classificação , Lamiales/microbiologia , Metagenômica/métodos , Organismos Aquáticos/microbiologia , Organismos Aquáticos/fisiologia , Bactérias/genética , Bactérias/isolamento & purificação , DNA de Algas/genética , DNA Bacteriano/genética , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Perfilação da Expressão Gênica/métodos , Lamiales/fisiologia , Consórcios Microbianos , Filogenia
3.
BMC Plant Biol ; 15: 78, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25848894

RESUMO

BACKGROUND: The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes. RESULTS: We sequenced a normalized cDNA library prepared from total RNA extracted from shoots of U. vulgaris including leaves and traps, cultivated under sterile or outdoor conditions. 454 pyrosequencing resulted in more than 1,400,000 reads which were assembled into 41,407 isotigs in 19,522 isogroups. We observed high transcript variation in several isogroups explained by multiple loci and/or alternative splicing. The comparison of U. vulgaris and U. gibba transcriptomes revealed a similar distribution of GO categories among expressed genes, despite the differences in transcriptome preparation. We also found a strong correspondence in the presence or absence of root-associated genes between the U. vulgaris transcriptome and U. gibba genome, which indicated that the loss of some root-specific genes had occurred before the divergence of the two rootless species. CONCLUSIONS: The species-rich genus Utricularia offers a unique opportunity to study adaptations related to the environment and carnivorous habit and also evolutionary processes responsible for considerable genome reduction. We show that a transcriptome may approximate the genome for gene content or gene duplication estimation. Our study is the first comparison of two global sequence data sets in Utricularia.


Assuntos
Processamento Alternativo/genética , Genoma de Planta , Magnoliopsida/genética , Homologia de Sequência do Ácido Nucleico , Transcriptoma/genética , Primers do DNA/metabolismo , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Raízes de Plantas/genética , Reação em Cadeia da Polimerase
4.
Ann Bot ; 114(1): 125-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817095

RESUMO

BACKGROUND AND AIMS: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS: Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 µmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS: It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.


Assuntos
Bactérias/isolamento & purificação , Droseraceae/metabolismo , Magnoliopsida/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Compostos de Amônio/análise , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Droseraceae/microbiologia , Ecologia , Ecossistema , Magnoliopsida/microbiologia , Dados de Sequência Molecular , Isótopos de Nitrogênio , Brotos de Planta/metabolismo , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Água/metabolismo
5.
Bioinformatics ; 29(6): 792-3, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23376349

RESUMO

MOTIVATION: Repetitive DNA makes up large portions of plant and animal nuclear genomes, yet it remains the least-characterized genome component in most species studied so far. Although the recent availability of high-throughput sequencing data provides necessary resources for in-depth investigation of genomic repeats, its utility is hampered by the lack of specialized bioinformatics tools and appropriate computational resources that would enable large-scale repeat analysis to be run by biologically oriented researchers. RESULTS: Here we present RepeatExplorer, a collection of software tools for characterization of repetitive elements, which is accessible via web interface. A key component of the server is the computational pipeline using a graph-based sequence clustering algorithm to facilitate de novo repeat identification without the need for reference databases of known elements. Because the algorithm uses short sequences randomly sampled from the genome as input, it is ideal for analyzing next-generation sequence reads. Additional tools are provided to aid in classification of identified repeats, investigate phylogenetic relationships of retroelements and perform comparative analysis of repeat composition between multiple species. The server allows to analyze several million sequence reads, which typically results in identification of most high and medium copy repeats in higher plant genomes.


Assuntos
DNA/química , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Software , Algoritmos , Análise por Conglomerados , Eucariotos/genética , Genoma , Internet , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA