Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(12): 220459, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533195

RESUMO

Recently, a unique mechanism for protecting the airway during lunge feeding was discovered in rorqual whales (Balaenopteridae). This mechanism is based on an oral plug structure in the soft palate with similarities in musculo-fatty composition to the nasal plugs protecting the respiratory tract of rorquals from water entry and barotrauma during diving. As a follow-up, we present here a developmental series on fetal, prenatal, juvenile and adult specimens across five species of rorquals, showing differential maturation of the nasal and oral respiratory protection plugs. Nasal plugs are fully formed to serve an immediate crucial function at birth. By contrast, the soft palate remains muscular until the onset of solid food intake, where a musculo-fatty oral plug is developed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34256130

RESUMO

The use of assisted ventilation is required in anesthetized reptiles as their respiratory drive is lost at surgical depths of anesthesia. The minute volume of the assisted ventilation influences arterial blood gases and acid-base regulation. Meanwhile, the ventilatory pattern may also affect hemodynamics in chelonians, which, given their large capacity for cardiac shunts, may impact the efficacy of the ventilation in terms of gas exchange. Hence, there is a need for primary information on the influence of assisted ventilation on chelonian physiology, and we, therefore, performed a randomized study into the effects of recumbency and maximum airway pressure on pressure-cycled ventilation in nine female Trachemys scripta scripta. Pronounced effects of ventilation pressure on arterial PCO2 and pH regardless of recumbency were revealed, whilst dorsal recumbency led to a larger Arterial-alveolar (A-a) O2 difference, suggesting compromised pulmonary gas exchange. Plasma [Na+] and [K+] balance was also significantly correlated with maximum airway pressure. Computed tomography (CT) scanning at a range of end-inspiratory pressures and ventral and dorsal recumbencies in eight T. scripta scripta showed that lung volumes increase with maximum ventilatory pressure, while recumbency did not influence volume at pressures above 5 cmH2O. Static compliance of the lungs was influenced by recumbency at neutral pressures. In conclusion, dorsal recumbency reduces pulmonary efficacy during positive pressure ventilation and tends to lower lung volume when ventilation is not provided. However, lung volumes and function - even in dorsal recumbency - can be adequately supported by assisted ventilation, and an end inspiratory pressure of 10 cmH2O at 4 breaths min-1 provided the most physiologically appropriate ventilation of anesthetized T. scripta scripta.


Assuntos
Gasometria , Pulmão/fisiologia , Respiração com Pressão Positiva/métodos , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial , Tartarugas/fisiologia , Anestésicos , Animais , Eletrólitos , Feminino , Água Doce , Hemodinâmica , Concentração de Íons de Hidrogênio , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pressão , Taxa Respiratória , Tomografia Computadorizada por Raios X
3.
J Med Imaging Radiat Sci ; 49(3): 257-264, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32074051

RESUMO

BACKGROUND: Neonatal chest radiography is a frequently performed diagnostic examination, particularly in preterm infants where anatomical and/or biochemical immaturity impacts on respiratory function. However, the quality of neonatal radiographic images has been criticized internationally and a prevailing concern has been that radiographers (radiologic technologists) fail to appreciate the unique nature of neonatal and infant anatomical proportions. The aim of this study was to undertake a retrospective evaluation of neonatal chest radiography image acquisition techniques against key technical criteria. METHODS: One hundred neonatal chest radiographs, randomly selected from those acquired in 2014, were retrospectively evaluated. Inclusion criteria for radiograph were as follows: anterior-posterior supine; within 30 days of birth; and with all preprocessed collimation boundaries visible. Image evaluation was systematically undertaken using an image assessment tool. To test for statistical significance, Student's t-test, χ2 test, and logistic regression were undertaken. RESULTS: Only 47% of the radiographs were considered straight in both upper and lower thoraces. The cranial collimation border extended beyond the upper border of the third cervical vertebra in 30% of cases, and the caudal border extended below the lower border of the first lumbar vertebra in 20% of cases, suggesting high possibility of neonatal overirradiation. Upper thorax rotation was significantly associated with head position (χ2 = 10.907; P < .001) as has been stated in many published textbooks internationally, but arm position had no apparent influence on rotation of the upper thorax (χ2 = 5.1260; P = .275). Birth weight was associated with accurate midline centering of central ray (logistic regression; OR = 1.0005; P = .009; CI, 1.00139-1.000957) with greater accuracy observed in images of neonates with higher birth weight. CONCLUSION: This study has highlighted areas for neonatal chest radiography improvement. Importantly, the findings bring into question commonly advocated radiographic techniques relating to arm positioning and assessment of rotation while confirming the importance of other technical factors. These findings begin the work toward developing the evidence base to underpin neonatal chest radiograph acquisition, but further prospective work and multicenter/multinational data comparison are required to confirm the findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA