Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0259327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533190

RESUMO

The vast majority of human traits, including many disease phenotypes, are affected by alleles at numerous genomic loci. With a continually increasing set of variants with published clinical disease or biomarker associations, an easy-to-use tool for non-programmers to rapidly screen VCF files for risk alleles is needed. We have developed EZTraits as a tool to quickly evaluate genotype data against a set of rules defined by the user. These rules can be defined directly in the scripting language Lua, for genotype calls using variant ID (RS number) or chromosomal position. Alternatively, EZTraits can parse simple and intuitive text including concepts like 'any' or 'all'. Thus, EZTraits is designed to support rapid genetic analysis and hypothesis-testing by researchers, regardless of programming experience or technical background. The software is implemented in C++ and compiles and runs on Linux and MacOS. The source code is available under the MIT license from https://github.com/selfdecode/rd-eztraits.


Assuntos
Genômica , Software , Alelos , Genótipo , Fenótipo
2.
J Neurooncol ; 148(3): 463-472, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32562246

RESUMO

INTRODUCTION: Temozolomide (TMZ) is a life prolonging DNA alkylating agent active against glioblastomas (GBM) in which the O6-methylguanine-DNA methyltransferase (MGMT) gene is silenced by promoter methylation. Unfortunately acquired TMZ resistance severely undermines its clinical efficacy. Using an in vitro model, we tested whether poly (ADP-ribose) polymerase-1 and -2 (PARP) inhibition could suppress the emergence of resistance to enhance the effectiveness of TMZ. METHODS: Using the MGMT-methylated GBM line U251N, in which TMZ resistance can be induced, we developed a method to rapidly recreate mechanisms of TMZ resistance seen in GBMs, including MMR mutations and MGMT re-expression. We then assessed whether TMZ resistant U251N sub-clones could be re-sensitized to TMZ by co-treatment with the PARP inhibitor ABT-888, and also whether the emergence of resistance could be suppressed by PARP inhibition. RESULTS: U251N cultures chronically exposed to TMZ developed discrete colonies that expanded during TMZ treatment. These colonies were isolated, expanded further as sub-clones, and assessed for mechanisms of TMZ resistance. Most resistant sub-clones had detectable mutations in one or more mismatch repair (MMR) genes, frequently MSH6, and displayed infrequent re-expression of MGMT. TMZ resistance was associated with isolated poly(ADP-ribose) (pADPr) up-regulation in one sub-clone and was unexplained in several others. TMZ resistant sub-clones regressed during co-treatment with TMZ and ABT-888, and early co-treatment of U251N parental cultures suppressed the emergence of TMZ resistant colonies. CONCLUSION: In a model of acquired resistance, co-treatment with TMZ and a PARP inhibitor had two important benefits: re-sensitization of TMZ resistant cells and suppression of TMZ resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Apoptose , Proliferação de Células , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células Tumorais Cultivadas
3.
Neuro Oncol ; 22(8): 1150-1161, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32296841

RESUMO

BACKGROUND: Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture. Here we report a model that overcomes this barrier to authenticity. METHODS: Using a method developed to establish neural stem cell cultures, we investigated the effects of PDGF-AA on subventricular zone (SVZ) cells, one of the putative cells of origin of GBM. We microdissected SVZ tissue from p53-null and wild-type adult mice, cultured cells in media supplemented with PDGF-AA, and assessed cell viability, proliferation, genome stability, and tumorigenicity. RESULTS: Counterintuitive to its canonical role as a growth factor, we observed abrupt and massive cell death in PDGF-AA: wild-type cells did not survive, whereas a small fraction of null cells evaded apoptosis. Surviving null cells displayed attenuated proliferation accompanied by whole chromosome gains and losses. After approximately 100 days in PDGF-AA, cells suddenly proliferated rapidly, acquired growth factor independence, and became tumorigenic in immune-competent mice. Transformed cells had an oligodendrocyte precursor-like lineage marker profile, were resistant to platelet derived growth factor receptor alpha inhibition, and harbored highly abnormal karyotypes similar to human GBM. CONCLUSION: This model associates genome instability in neural progenitor cells with chronic exposure to PDGF-AA and is the first to approximate the genomic landscape of human GBM and the first in which the earliest phases of the disease can be studied directly.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células-Tronco Neurais , Fator de Crescimento Derivado de Plaquetas , Proteína Supressora de Tumor p53 , Animais , Neoplasias Encefálicas/induzido quimicamente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Células Cultivadas , Glioblastoma/induzido quimicamente , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Ventrículos Laterais/efeitos dos fármacos , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
4.
PLoS One ; 13(8): e0202860, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30153289

RESUMO

BACKGROUND: Temozolomide (TMZ) is active against glioblastomas (GBM) in which the O6-methylguanine-DNA methyltransferase (MGMT) gene is silenced. However, even in responsive cases, its beneficial effect is undermined by the emergence of drug resistance. Here, we tested whether inhibition of poly (ADP-ribose) polymerase-1 and -2 (PARP) enhanced the effectiveness of TMZ. METHODS: Using patient derived brain tumor initiating cells (BTICs) and orthotopic xenografts as models of newly diagnosed and recurrent high-grade glioma, we assessed the effects of TMZ, ABT-888, and the combination of TMZ and ABT-888 on the viability of BTICs and survival of tumor-bearing mice. We also studied DNA damage repair, checkpoint protein phosphorylation, and DNA replication in mismatch repair (MMR) deficient cells treated with TMZ and TMZ plus ABT-888. RESULTS: Cells and xenografts derived from newly diagnosed MGMT methylated high-grade gliomas were sensitive to TMZ while those derived from unmethylated and recurrent gliomas were typically resistant. ABT-888 had no effect on the viability of BTICs or tumor bearing mice, but co-treatment with TMZ restored sensitivity in resistant cells and xenografts from newly diagnosed unmethylated gliomas and recurrent gliomas with MSH6 mutations. In contrast, the addition of ABT-888 to TMZ had little sensitizing effect on cells and xenografts derived from newly diagnosed methylated gliomas. In a model of acquired TMZ resistance mediated by loss of MMR gene MSH6, re-sensitization to TMZ by ABT-888 was accompanied by persistent DNA strand breaks, re-engagement of checkpoint kinase signaling, and interruption of DNA synthesis. CONCLUSION: In laboratory models, the addition of ABT-888 to TMZ overcame resistance to TMZ.


Assuntos
Benzimidazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Gradação de Tumores , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA