RESUMO
Cardiogenesis relies on the precise spatiotemporal coordination of multiple progenitor populations. Understanding the specification and differentiation of these distinct progenitor pools during human embryonic development is crucial for advancing our knowledge of congenital cardiac malformations and designing new regenerative therapies. By combining genetic labelling, single-cell transcriptomics, and ex vivo human-mouse embryonic chimeras we uncovered that modulation of retinoic acid signaling instructs human pluripotent stem cells to form heart field-specific progenitors with distinct fate potentials. In addition to the classical first and second heart fields, we observed the appearance of juxta-cardiac field progenitors giving rise to both myocardial and epicardial cells. Applying these findings to stem-cell based disease modelling we identified specific transcriptional dysregulation in first and second heart field progenitors derived from stem cells of patients with hypoplastic left heart syndrome. This highlights the suitability of our in vitro differentiation platform for studying human cardiac development and disease.
Assuntos
Células-Tronco Pluripotentes , Tretinoína , Humanos , Animais , Camundongos , Tretinoína/farmacologia , Coração , Miocárdio , Diferenciação Celular , Miócitos CardíacosRESUMO
BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.
Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Animais , Cardiomiopatia Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fatores de Transcrição/genéticaRESUMO
The newly revised 2021 ISSCR Guidelines for Stem Cell Research and Clinical Translation includes scientific and ethical guidance for the transfer of human pluripotent stem cells and their direct derivatives into animal models. In this white paper, the ISSCR subcommittee that drafted these guidelines for research involving the use of nonhuman embryos and postnatal animals explains and summarizes their recommendations.
Assuntos
Quimera , Pesquisas com Embriões/ética , Células-Tronco Pluripotentes , Guias de Prática Clínica como Assunto , Sociedades Científicas/normas , Pesquisa com Células-Tronco/ética , Transplante de Células-Tronco/normas , Animais , Humanos , Sociedades Científicas/ética , Transplante de Células-Tronco/éticaRESUMO
Recently in Cell, Tan et al. (2021) report the successful generation of human-monkey chimeras in vitro, providing an opportunity for new insights into the biology of human stem cells and early human development in an embryonic environment that is evolutionary closer to human than previously studied rodent and domestic species.
Assuntos
Quimera , Células-Tronco Pluripotentes , Animais , Haplorrinos , HumanosRESUMO
BACKGROUND: Genomic imprinting, resulting in parent-of-origin specific gene expression, plays a critical role in mammalian development. Here, we apply allele-specific RNA-seq on isogenic B6D2F1 mice to assay imprinted genes in tissues from early embryonic tissues between E3.5 and E7.25 and in pluripotent cell lines to evaluate maintenance of imprinted gene expression. For the cell lines, we include embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) derived from fertilized embryos and from embryos obtained after nuclear transfer (NT) or parthenogenetic activation (PGA). RESULTS: As homozygous genomic regions of PGA-derived cells are not compatible with allele-specific RNA-seq, we developed an RNA-seq-based genotyping strategy allowing identification of informative heterozygous regions. Global analysis shows that proper imprinted gene expression as observed in embryonic tissues is largely lost in the ESC lines included in this study, which mainly consisted of female ESCs. Differentiation of ESC lines to embryoid bodies or NPCs does not restore monoallelic expression of imprinted genes, neither did reprogramming of the serum-cultured ESCs to the pluripotent ground state by the use of 2 kinase inhibitors. Fertilized EpiSC and EpiSC-NT lines largely maintain imprinted gene expression, as did EpiSC-PGA lines that show known paternally expressed genes being silent and known maternally expressed genes consistently showing doubled expression. Notably, two EpiSC-NT lines show aberrant silencing of Rian and Meg3, two critically imprinted genes in mouse iPSCs. With respect to female EpiSC, most of the lines displayed completely skewed X inactivation suggesting a (near) clonal origin. CONCLUSIONS: Altogether, our analysis provides a comprehensive overview of imprinted gene expression in pluripotency and provides a benchmark to allow identification of cell lines that faithfully maintain imprinted gene expression and therefore retain full developmental potential.
Assuntos
Alelos , Impressão Genômica , Células-Tronco Embrionárias Murinas/metabolismo , RNA Mensageiro/genética , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Células-Tronco Embrionárias Murinas/citologiaRESUMO
During early mammalian development, transient pools of pluripotent cells emerge that can be immortalised upon stem cell derivation. The pluripotent state, 'naïve' or 'primed', depends on the embryonic stage and derivation conditions used. Here we analyse the temporal gene expression patterns of mouse, cattle and porcine embryos at stages that harbour different types of pluripotent cells. We document conserved and divergent traits in gene expression, and identify predictor genes shared across the species that are associated with pluripotent states in vivo and in vitro Amongst these are the pluripotency-linked genes Klf4 and Lin28b The novel genes discovered include naïve- (Spic, Scpep1 and Gjb5) and primed-associated (Sema6a and Jakmip2) genes as well as naïve to primed transition genes (Dusp6 and Trip6). Both Gjb5 and Dusp6 play a role in pluripotency since their knockdown results in differentiation and downregulation of key pluripotency genes. Our interspecies comparison revealed new insights of pluripotency, pluripotent stem cell identity and a new molecular criterion for distinguishing between pluripotent states in various species, including human.
RESUMO
This corrects the article DOI: 10.1038/ncomms11208.
RESUMO
The isolation or in vitro derivation of many human cell types remains challenging and inefficient. Direct conversion of human pluripotent stem cells (hPSCs) by forced expression of transcription factors provides a potential alternative. However, deficient inducible gene expression in hPSCs has compromised efficiencies of forward programming approaches. We have systematically optimized inducible gene expression in hPSCs using a dual genomic safe harbor gene-targeting strategy. This approach provides a powerful platform for the generation of human cell types by forward programming. We report robust and deterministic reprogramming of hPSCs into neurons and functional skeletal myocytes. Finally, we present a forward programming strategy for rapid and highly efficient generation of human oligodendrocytes.
Assuntos
Diferenciação Celular , Marcação de Genes/métodos , Fibras Musculares Esqueléticas/citologia , Neurônios/citologia , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Linhagem Celular , Reprogramação Celular , Expressão Gênica , Humanos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Neurogênese , Neurônios/metabolismo , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transgenes , Regulação para CimaRESUMO
The polycomb repressive complex 2 (PRC2) methylates lysine 27 of histone H3 (H3K27) through its catalytic subunit Ezh2. PRC2-mediated di- and tri-methylation (H3K27me2/H3K27me3) have been interchangeably associated with gene repression. However, it remains unclear whether these two degrees of H3K27 methylation have different functions. In this study, we have generated isogenic mouse embryonic stem cells (ESCs) with a modified H3K27me2/H3K27me3 ratio. Our findings document dynamic developmental control in the genomic distribution of H3K27me2 and H3K27me3 at regulatory regions in ESCs. They also reveal that modifying the ratio of H3K27me2 and H3K27me3 is sufficient for the acquisition and repression of defined cell lineage transcriptional programs and phenotypes and influences induction of the ESC ground state.
Assuntos
Linhagem da Célula , Histonas/metabolismo , Lisina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Diferenciação Celular/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Genoma , Metilação , Camundongos , Neurônios/citologia , Edição de RNA , Sequências Reguladoras de Ácido Nucleico/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Chimeras are widely acknowledged as the gold standard for assessing stem cell pluripotency, based on their capacity to test donor cell lineage potential in the context of an organized, normally developing tissue. Experimental chimeras provide key insights into mammalian developmental mechanisms and offer a resource for interrogating the fate potential of various pluripotent stem cell states. We highlight the applications and current limitations presented by intra- and inter-species chimeras and consider their future contribution to the stem cell field. Despite the technical and ethical demands of experimental chimeras, including human-interspecies chimeras, they are a provocative resource for achieving regenerative medicine goals.
Assuntos
Quimera/metabolismo , Células-Tronco Pluripotentes/citologia , Pesquisa com Células-Tronco , Animais , Linhagem da Célula , Embrião de Mamíferos/citologia , Humanos , Especificidade da EspécieRESUMO
The production of megakaryocytes (MKs)--the precursors of blood platelets--from human pluripotent stem cells (hPSCs) offers exciting clinical opportunities for transfusion medicine. Here we describe an original approach for the large-scale generation of MKs in chemically defined conditions using a forward programming strategy relying on the concurrent exogenous expression of three transcription factors: GATA1, FLI1 and TAL1. The forward programmed MKs proliferate and differentiate in culture for several months with MK purity over 90% reaching up to 2 × 10(5) mature MKs per input hPSC. Functional platelets are generated throughout the culture allowing the prospective collection of several transfusion units from as few as 1 million starting hPSCs. The high cell purity and yield achieved by MK forward programming, combined with efficient cryopreservation and good manufacturing practice (GMP)-compatible culture, make this approach eminently suitable to both in vitro production of platelets for transfusion and basic research in MK and platelet biology.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Fator de Transcrição GATA1/genética , Megacariócitos/citologia , Células-Tronco Pluripotentes/citologia , Proteína Proto-Oncogênica c-fli-1/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Criopreservação/métodos , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/genética , Megacariócitos/metabolismo , Análise em Microsséries , Células-Tronco Pluripotentes/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Transdução Genética , TransgenesRESUMO
Pluripotent stem cells are defined by their capacity to differentiate into all three tissue layers that comprise the body. Chimera formation, generated by stem cell transplantation to the embryo, is a stringent assessment of stem cell pluripotency. However, the ability of human pluripotent stem cells (hPSCs) to form embryonic chimeras remains in question. Here we show using a stage-matching approach that human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) have the capacity to participate in normal mouse development when transplanted into gastrula-stage embryos, providing in vivo functional validation of hPSC pluripotency. hiPSCs and hESCs form interspecies chimeras with high efficiency, colonize the embryo in a manner predicted from classical developmental fate mapping, and differentiate into each of the three primary tissue layers. This faithful recapitulation of tissue-specific fate post-transplantation underscores the functional potential of hPSCs and provides evidence that human-mouse interspecies developmental competency can occur.
Assuntos
Técnicas de Cultura de Células , Quimerismo , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Gástrula/fisiologia , Humanos , Camundongos , Medicina Regenerativa , Especificidade da EspécieRESUMO
This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.
Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/citologia , Vírus Sendai/genética , Animais , Separação Celular/métodos , Células Cultivadas , Meios de Cultura , Citocinas/farmacologia , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Eritroblastos/virologia , Fibroblastos/citologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/virologia , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteínas Recombinantes/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/fisiologiaRESUMO
Retinal progenitors are initially found in the anterior neural plate region known as the eye field, whereas neighboring areas undertake telencephalic or hypothalamic development. Eye field cells become specified by switching on a network of eye field transcription factors, but the extracellular cues activating this network remain unclear. In this study, we used chemically defined media to induce in vitro differentiation of mouse embryonic stem cells (ESCs) toward eye field fates. Inhibition of Wnt/ß-catenin signaling was sufficient to drive ESCs to telencephalic, but not retinal, fates. Instead, retinal progenitors could be generated from competent differentiating mouse ESCs by activation of Activin/Nodal signaling within a narrow temporal window corresponding to the emergence of primitive anterior neural progenitors. Activin also promoted eye field gene expression in differentiating human ESCs. Our results reveal insights into the mechanisms of eye field specification and open new avenues toward the generation of retinal progenitors for translational medicine.
Assuntos
Ativinas/metabolismo , Células-Tronco Embrionárias/citologia , Proteína Nodal/metabolismo , Células-Tronco Pluripotentes/citologia , Retina/embriologia , Transdução de Sinais , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/citologia , Retina/metabolismo , Via de Sinalização WntRESUMO
The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.
Assuntos
Células-Tronco Embrionárias/citologia , Proteínas Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/fisiologia , Proteína Smad1/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Endoderma/citologia , Gastrulação/fisiologia , Humanos , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismoRESUMO
Stem cells can self-renew and differentiate into multiple cell types. These characteristics are maintained by the combination of specific signaling pathways and transcription factors that cooperate to establish a unique epigenetic state. Despite the broad interest of these mechanisms, the precise molecular controls by which extracellular signals organize epigenetic marks to confer multipotency remain to be uncovered. Here, we use human embryonic stem cells (hESCs) to show that the Activin-SMAD2/3 signaling pathway cooperates with the core pluripotency factor NANOG to recruit the DPY30-COMPASS histone modifiers onto key developmental genes. Functional studies demonstrate the importance of these interactions for correct histone 3 Lys4 trimethylation and also self-renewal and differentiation. Finally, genetic studies in mice show that Dpy30 is also necessary to maintain pluripotency in the pregastrulation embryo, thereby confirming the existence of similar regulations in vivo during early embryonic development. Our results reveal the mechanisms by which extracellular factors coordinate chromatin status and cell fate decisions in hESCs.
Assuntos
Ativinas/metabolismo , Diferenciação Celular/genética , Cromatina/genética , Histonas/genética , Proteínas de Homeodomínio/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Cromatina/metabolismo , Embrião de Mamíferos , Células-Tronco Embrionárias , Epigênese Genética/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Proteína Homeobox Nanog , Proteína Smad2/metabolismo , Proteína Smad3/metabolismoRESUMO
The epicardium has emerged as a multipotent cardiovascular progenitor source with therapeutic potential for coronary smooth muscle cell, cardiac fibroblast (CF) and cardiomyocyte regeneration, owing to its fundamental role in heart development and its potential ability to initiate myocardial repair in injured adult tissues. Here, we describe a chemically defined method for generating epicardium and epicardium-derived smooth muscle cells (EPI-SMCs) and CFs from human pluripotent stem cells (HPSCs) through an intermediate lateral plate mesoderm (LM) stage. HPSCs were initially differentiated to LM in the presence of FGF2 and high levels of BMP4. The LM was robustly differentiated to an epicardial lineage by activation of WNT, BMP and retinoic acid signalling pathways. HPSC-derived epicardium displayed enhanced expression of epithelial- and epicardium-specific markers, exhibited morphological features comparable with human foetal epicardial explants and engrafted in the subepicardial space in vivo. The in vitro-derived epicardial cells underwent an epithelial-to-mesenchymal transition when treated with PDGF-BB and TGFß1, resulting in vascular SMCs that displayed contractile ability in response to vasoconstrictors. Furthermore, the EPI-SMCs displayed low density lipoprotein uptake and effective lowering of lipoprotein levels upon treatment with statins, similar to primary human coronary artery SMCs. Cumulatively, these findings suggest that HPSC-derived epicardium and EPI-SMCs could serve as important tools for studying human cardiogenesis, and as a platform for vascular disease modelling and drug screening.
Assuntos
Pericárdio/citologia , Pericárdio/metabolismo , Células-Tronco Pluripotentes/citologia , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The Hairy-related transcription factor family of Notch- and ALK1-downstream transcriptional repressors, called Hrt/Hey/Hesr/Chf/Herp/Gridlock, has complementary and indispensable functions for vascular development. While mouse embryos null for either Hrt1/Hey1 or Hrt2/Hey2 did not show early vascular phenotypes, Hrt1/Hey1; Hrt2/Hey2 double null mice (H1(ko) /H2(ko) ) showed embryonic lethality with severe impairment of vascular morphogenesis. It remained unclear, however, whether Hrt/Hey functions are required in endothelial cells or vascular smooth muscle cells. In this study, we demonstrate that mice with endothelial-specific deletion of Hrt2/Hey2 combined with global Hrt1/Hey1 deletion (H1(ko) /H2(eko) ) show abnormal vascular morphogenesis and embryonic lethality. Their defects were characterized by the failure of vascular network formation in the yolk sac, abnormalities of embryonic vascular structures and impaired smooth muscle cell recruitment, and were virtually identical to the H1(ko) /H2(ko) phenotypes. Among signaling molecules implicated in vascular development, Robo4 expression was significantly increased and activation of Src family kinases was suppressed in endothelial cells of H1(ko) /H2(eko) embryos. The present study indicates an important role of Hrt1/Hey1 and Hrt2/Hey2 in endothelial cells during early vascular development, and further suggests involvement of Robo4 and Src family kinases in the mechanisms of embryonic vascular defects caused by the Hrt/Hey deficiency.