Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Sep Sci ; 47(15): e2400292, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39091169

RESUMO

This study investigated the capability of electromembrane extraction (EME) as a general technique for peptides, by extracting complex pools of peptides comprising in total of 5953 different substances, varying in size from seven to 16 amino acids. Electromembrane extraction was conducted from a sample adjusted to pH 3.0 and utilized a liquid membrane consisting of 2-nitrophenyl octyl ether and carvacrol (1:1 w/w), containing 2% (w/w) di(2-ethylhexyl) phosphate. The acceptor phase was 50 mM phosphoric acid (pH 1.8), the extraction time was 45 min, and 10 V was used. High extraction efficiency, defined as a higher peptide signal in the acceptor than the sample after extraction, was achieved for 3706 different peptides. Extraction efficiencies were predominantly influenced by the hydrophobicity of the peptides and their net charge in the sample. Hydrophobic peptides were extracted with a net charge of +1, while hydrophilic peptides were extracted when the net charge was +2 or higher. A computational model based on machine learning was developed to predict the extractability of peptides based on peptide descriptors, including the grand average of hydropathy index and net charge at pH 3.0 (sample pH). This research shows that EME has general applicability for peptides and represents the first steps toward in silico prediction of extraction efficiency.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Peptídeos , Peptídeos/química , Peptídeos/isolamento & purificação , Membranas Artificiais , Técnicas Eletroquímicas , Tamanho da Partícula , Concentração de Íons de Hidrogênio , Éteres , Organofosfatos
2.
J Anal Toxicol ; 48(7): 489-498, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38905017

RESUMO

Hair analysis can provide chronological insights into past drug use for months to years after drug administration. In comparison to analyses from other biological matrices, such as blood and urine, sample pretreatment is often tedious and not environmental friendly. In this study, we present a more environmental friendly approach to hair analysis using micropulverized hair and electromembrane extraction for the efficient extraction of 15 drugs of abuse, prescription drugs, and metabolites from hair. The optimized extraction method, involving micropulverization, demonstrated comparable yields to the standard approach of cutting and overnight incubation. A 15-min extraction method using a commercial electromembrane extraction prototype was developed and validated according to forensic guidelines, using only 10 µL of organic solvent per sample. The final method, employing HPLC-MS-MS with a biphenyl column, exhibited good linearity, precision, and sensitivity. An AgreePrep assessment comparing the environmental impact of our method with the standard routine method, involving overnight incubation and conventional liquid-liquid extraction, was conducted. This is the first time micropulverized hair has been subjected to electromembrane extraction.


Assuntos
Cabelo , Drogas Ilícitas , Detecção do Abuso de Substâncias , Espectrometria de Massas em Tandem , Cabelo/química , Humanos , Detecção do Abuso de Substâncias/métodos , Drogas Ilícitas/análise , Cromatografia Líquida de Alta Pressão , Medicamentos sob Prescrição/análise , Reprodutibilidade dos Testes , Extração Líquido-Líquido , Toxicologia Forense/métodos , Solventes , Técnicas Eletroquímicas , Limite de Detecção
3.
Anal Chim Acta ; 1297: 342360, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438237

RESUMO

BACKGROUND: Electromembrane extraction (EME) involves the process of mass transfer of charged analytes from an aqueous sample through an organic liquid membrane into an aqueous acceptor medium under the influence of an electrical field. Successful solvation of the analyte within the liquid membrane is of paramount importance and involves molecular interactions with the liquid membrane. In this comprehensive investigation, parallel EME was examined using a training set of 13 model peptides employing deep eutectic solvents as the liquid membrane. These deep eutectic solvents were formulated by mixing specific monoterpenes (thymol, menthol, camphor) with medium-chain fatty acids (1-octanoic acid and 1-decanoic acid). RESULTS: From an array of different liquid membrane compositions explored, it was revealed that the combination of camphor and 1-decanoic acid (in a 1:1 w/w ratio) with 2% di (2-ethylhexyl) phosphate (DEHP) delivered the most efficient extraction system. The solvation of the model peptides within this liquid membrane predominantly relied on ionic interactions between protonated basic functionalities and DEHP, along with hydrogen bond interactions between the deprotonated acid functionalities (hydrogen bond acceptor) and 1-decanoic acid (hydrogen bond donor). Selectivity was modulated by the pH of the sample and acceptor solutions, with a direct correlation to the polarity and net charge of the model peptides. The ionization of 1-decanoic acid in the interfacial region between the sample and liquid membrane emerged as an important factor influencing the selectivity. SIGNIFICANCE AND NOVELTY: Although parallel EME of peptides has been reported previously, the current liquid membrane provides an extraction system with sufficient stability for the first time. Selective extraction of peptides through EME holds substantial promise within the realm of next-generation environmentally-friendly sample preparation methodologies. The findings presented in this paper contribute significantly to our fundamental understanding of these processes, and may serve as an important reference for the development of future methods in this field.


Assuntos
Dietilexilftalato , Monoterpenos , Ácidos Graxos , Solventes Eutéticos Profundos , Cânfora , Peptídeos , Ácidos Decanoicos
4.
Anal Chim Acta ; 1301: 342387, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553114

RESUMO

BACKGROUND: Parallel artificial liquid membrane extraction (PALME) is a 96-well plate setup variant of liquid-phase microextraction. Basic or acidic analytes are extracted in neutral form from the sample, through a supported liquid membrane (SLM), and into aqueous acceptor. PALME is already considered a green extraction technique, but in the current conceptual work, we sought to make it even greener by replacing the use of organic solvents with essential oils (EO). PALME was combined with LC-MS/MS for analysis of plasma samples and multiple drugs of abuse with toxicological relevance (amphetamines, phenethylamines, synthetic cathinones, designer benzodiazepines, ayahuasca alkaloids, lysergic acid diethylamide, and ketamine). RESULTS: Fourteen EO were compared to organic solvents frequently used in PALME. The EO termed smart & sassy yielded the best analyte recovery for all drugs studied and was thus selected as SLM. Then, factorial screening and Box-Behnken were employed to optimize the technique. The extraction time, concentration of base, sample volume, and percentage of trioctylamine significantly impacted analyte recovery. The optimum values were defined as 120 min, 10 mmol/L of NaOH, 150 µL, and 0%, respectively. Once optimized, validation parameters were 1-100 ng mL-1 as linear range, accuracy ±16.4%, precision >83%, 1 ng mL-1 as limit of quantitation, 0.1-0.75 ng mL-1 as limit of detection, matrix effect <20%, and recovery 20-106%. Additionally, EO purchased from different production batches were tested and achieved acceptable reproducibility. Data were in compliance with requirements set by internationally accepted validation guidelines and the applicability of the technique was proven using authentic samples. SIGNIFICANCE: In this study, the use of an EO provided a solvent-free sample preparation technique suited to extract different classes of drugs of abuse from plasma samples, dismissing the use of hazardous organic solvents. The method also provided excellent sample clean-up, thus being a simple and efficient tool for toxicological applications that is in agreement with the principles of sustainable chemistry.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Microextração em Fase Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Membranas Artificiais , Reprodutibilidade dos Testes , Solventes , Limite de Detecção
5.
J Sep Sci ; 47(3): e2300801, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356234

RESUMO

Generic electromembrane extraction (EME) methods were developed and optimized for basic analytes of moderate or low polarity, employing prototype conductive vial EME equipment. Two generic methods, B1 and B2, were devised for mono- and dibasic compounds with distinct polarity windows: 2.0 < log P < 6.0 for B1 and 1.0 < log P < 4.5 for B2. In B1, 10 µL of 2-nitrophenyl octyl ether served as the liquid membrane, while B2 utilized 10 µL of 2-undecanone. Both methods involved the acidification of 125 µL of human plasma samples with 125 µL of sample diluent (0.5 M HCOOH for B1 and 1.0 M HCOOH for B2). The acceptor phase consisted of 250 µL of 100 mM HCOOH. Extraction was conducted for 30 min with agitation at 800 rpm, employing an extraction potential of 100 V for B1 and 50 V for B2. A set of 90 pharmaceutical compounds was employed as model analytes. Both B1 and B2 demonstrated high recoveries (40%-100%) for the majority of model analytes within their respective polarity windows. Intra-day precision was within 2.2% and 9.7% relative standard deviation. Both extraction systems exhibited stability in terms of current, matrix effect values were between 90% and 109%.

6.
J Chromatogr A ; 1710: 464440, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37832461

RESUMO

In this comparative study, the performance of liquid-phase microextraction and electromembrane extraction in prototype equipment was evaluated for extraction of ninety basic substances from plasma. Using a commercial EME device based on conductive vials enabled a standardized and comprehensive comparison between the two methods. Extractions were performed from a pH-adjusted donor solution, across an organic liquid membrane immobilized in a porous polypropylene membrane, and into an acidic acceptor solution. In LPME, dodecyl acetate was used as the extraction solvent, while 2-nitrophenyl octyl ether was used for EME with an electric field applied across the system. To assess the extraction performance, extraction recovery plots and extraction time curves were constructed and analyzed. These plots provided insights into the efficiency and effectiveness of LPME and EME, allowing users to make better decisions about the most suitable method for a specific bioanalytical application. Both LPME and EME were effective for substances with 2.0 < log P < 4.0, with EME showing faster extraction kinetics. Small (200 µL) and large vials (600 µL) were compared, showing that smaller vials improved kinetics markedly in both techniques. Carrier-mediated extraction showed improved performance for analytes with log P < 2 in EME, however, with some limitations due to system instability. This is, to our knowledge, the first time LPME was performed in the commercial vial-based equipment. An evaluation of vial-based LPME investigating linearity, precision, accuracy, and matrix effects showed promising results. These findings contribute to a general understanding of the performance differences in vial-based LPME and EME.


Assuntos
Microextração em Fase Líquida , Microextração em Fase Líquida/métodos , Solventes , Eletricidade , Cinética , Condutividade Elétrica , Membranas Artificiais
7.
J Anal Toxicol ; 47(9): 787-796, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700512

RESUMO

Benzimidazole opioids, often referred to as nitazenes, represent a subgroup of new psychoactive substances with a recent increase in fatal overdoses in the USA and Europe. With a variety of analogs emerging on the illicit drug market, forensic laboratories are challenged to identify these potent drugs. We here present a simple quantitative approach for the determination of nine nitazene analogs, namely, clonitazene, etodesnitazene, etonitazene, etonitazepyne, flunitazene, isotonitazene, metodesnitazene, metonitazene and protonitazene in whole blood using liquid-phase microextraction and electromembrane extraction in a 96-well format and liquid chromatography-tandem mass spectrometry. Green and efficient sample preparation was accomplished by liquid-phase microextraction in a 96-well format and resulted in high extraction yields for all analytes (>81%). Here, blood diluted with buffer (1:1, %v) was extracted from a donor compartment across a thin organic liquid membrane and into an aqueous acceptor solution. The acceptor solution was collected and directly injected into the analysis platform. Chromatographic separation was accomplished with a biphenyl column, allowing for a baseline separation of the structural isomers isotonitazene and protonitazene before detection by multiple reaction monitoring. Validation was performed according to Scientific Working Group of Forensic Toxicology guidelines. The calibration range was from 0.5 to 50 nM (except for protonitazene and clonitazene from 0.1 nM) with good linearity and limits of detection down to 0.01 nM. An AGREEprep assessment was performed to evaluate sample preparation greenness, with a final score of 0.71. Nitazenes represent a current threat to public health, and analytical methods that cover a wide range of these analogs are limited. Here, the described method may assist in the detection of nitazenes in whole blood and prevent these substances from being missed in postmortem investigations.


Assuntos
Drogas Ilícitas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Analgésicos Opioides , Cromatografia Líquida de Alta Pressão/métodos , Drogas Ilícitas/análise , Benzimidazóis
8.
Anal Chim Acta ; 1275: 341610, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37524472

RESUMO

BACKGROUND: Electromembrane extraction (EME) of peptides reported in the scientific literature involve transfer of net positively charged peptides from an aqueous sample, through a liquid membrane, and into an aqueous acceptor solution, under the influence of an electrical field. The liquid membrane comprises an organic solvent, containing an ionic carrier. The purpose of the ionic carrier is to facilitate peptide solvation in the organic solvent based on ionic interactions. Unfortunately, ionic carriers increase the conductivity of the liquid membrane; the current in the system increases, the electrolysis in sample and acceptor is accelerated, and the extraction system tend to be unstable and suffers from drifting pH. RESULTS: In the present work, a broad selection of organic solvents were tested as pure liquid membrane for EME of peptides, without ionic carrier. Several phosphates provided high mass transfer, and tri(pentyl) phosphate was selected since this solvent also provided high operational stability. Among 16 different peptides used as model analytes, tri(pentyl) phosphate extracted those with net charge +1 and with no more than two polar side chains. Tri(pentyl) phosphate served as a very strong hydrogen bond acceptor, while the protonated peptides were hydrogen bond donors. By such, hydrogen bonding served as the primary interactions responsible for mass transfer. Tri(pentyl) phosphate as liquid membrane, could exhaustively extract leu-enkephalin, met-enkephalin, and endomorphin from human blood plasma and detected by LC-MS/MS. Calibration curves were linear (r2 > 0.99) within a concentration range from 1 to 500 ng/mL, and a relative standard deviation within 12% was observed for precision studies. SIGNIFICANCE: The current experiments are important because they indicate that small peptides of low polarity may be extracted selectively in EME based on hydrogen bond interactions, in systems not suffering from electrolysis.

9.
Anal Bioanal Chem ; 415(22): 5323-5335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37386201

RESUMO

The use of oral fluid as sample matrix has gained significance in the analysis of drugs of abuse due to its non-invasive nature. In this study, the 13 opioids morphine, oxycodone, codeine, O-desmethyl tramadol, ethylmorphine, tramadol, pethidine, ketobemidone, buprenorphine, fentanyl, cyclopropylfentanyl, etonitazepyne, and methadone were extracted from oral fluid using electromembrane extraction based on conductive vials prior to analysis with ultra-high performance liquid chromatography-tandem mass spectrometry. Oral fluid was collected using Quantisal collection kits. By applying voltage, target analytes were extracted from oral fluid samples diluted with 0.1% formic acid, across a liquid membrane and into a 300 µL 0.1% (v/v) formic acid solution. The liquid membrane comprised 8 µL membrane solvent immobilized in the pores of a flat porous polypropylene membrane. The membrane solvent was a mixture of 6-methylcoumarin, thymol, and 2-nitrophenyloctyl ether. The composition of the membrane solvent was found to be the most important parameter to achieve simultaneous extraction of all target opioids, which had predicted log P values in the range from 0.7 to 5.0. The method was validated in accordance to the guidelines by the European Medical Agency with satisfactory results. Intra- and inter-day precision and bias were within guideline limits of ± 15% for 12 of 13 compounds. Extraction recoveries ranged from 39 to 104% (CV ≤ 23%). Internal standard normalized matrix effects were in the range from 88 to 103% (CV ≤ 5%). Quantitative results of authentic oral fluid samples were in accordance with a routine screening method, and external quality control samples for both hydrophilic and lipophilic compounds were within acceptable limits.


Assuntos
Analgésicos Opioides , Tramadol , Analgésicos Opioides/análise , Formiatos , Cromatografia Líquida de Alta Pressão/métodos , Solventes
10.
Anal Chem ; 95(23): 8982-8989, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259537

RESUMO

For the first time, this paper introduces the idea of generic extraction conditions in electromembrane extraction (EME), where the selection of the liquid membrane is based on the charge (z) and hydrophobicity (log P) of the analyte. A broad range of organic solvents were tested as liquid membranes, and 90 basic pharmaceuticals were used as model analytes (-4.2 < log P < 8.1). 2-Nitrophenyl octyl ether (NPOE) was confirmed as a highly efficient liquid membrane for mono- and dibases (+1.0 ≤ z ≤ +2.0) of low polarity in the log P range of 2.2-6.4. This log P range was set as the extraction window (operational range) of NPOE. NPOE provided very high operational stability. At 50 V, the current was at a 1 µA level, and gas formation and drifting pH due to electrolysis were insignificant. 2-Undecanone was discovered as a new and robust alternative. This solvent extracted monobasic analytes (z = +1) in the log P range of 1.0-5.8 and was efficient even for bases of moderate polarity. The current was at the 1-3 µA level when 2-undecanone was operated at 50 V. Tri(pentyl) phosphate emerged as another new alternative for bases in the log P range of 0.5 to 5.5, providing greater selectivity differences. This solvent provided a higher current (30-50 µA), but the EME system stability was not compromised. 2-Undecanone and tri(pentyl) phosphate extracted protonated bases mainly by hydrogen bond interactions. NPOE, on the other hand, extracted based on a combination of hydrogen bond and π-type interactions and was consequently less selective.

11.
Drug Test Anal ; 15(8): 909-918, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37114617

RESUMO

Separation and quantification of amphetamine enantiomers are commonly used to distinguish between consumption of prescription amphetamine (mostly S-amphetamine) and illicit forms of the drug (racemate). In this study, electromembrane extraction with prototype conductive vials was combined with ultra-high performance supercritical fluid chromatography (UHPSFC-MS/MS) to quantify R- and S-amphetamine in urine. Amphetamine was extracted from 100 µL urine, diluted with 25 µL internal standard solution and 175 µL 130 mM formic acid, across a supported liquid membrane (SLM) consisting of 9 µL of a 1:1(w/w) mixture of 2-nitrophenyloctyl ether (NPOE) and bis(2-ethylhexyl)phosphite (DEHPi) into an acceptor phase containing 300 µL 130 mM formic acid. The extraction was facilitated by the application of 30 V for 15 min. Enantiomeric separation was achieved using UHPSFC-MS/MS with a chiral stationary phase. The calibration range was 50-10,000 ng/mL for each enantiomer. The between-assay CV was ≤5%, within-assay CV ≤ 1.5%, and bias within ±2%. Recoveries were 83%-90% (CV ≤ 6%), and internal standard corrected matrix effects were 99-105 (CV ≤ 2%). The matrix effects ranged from 96% to 98% (CV ≤ 8%) when not corrected by the internal standard. The EME method was compared with a chiral routine method that employed liquid-liquid extraction (LLE) for sample preparation. Assay results were in agreement with the routine method, and the mean deviation between methods was 3%, ranging from -21% to 31%. Finally, sample preparation greenness was assessed using the AGREEprep tool, which resulted in a greenness score of 0.54 for conductive vial EME, opposed to 0.47 for semi-automated 96-well LLE.


Assuntos
Anfetamina , Cromatografia com Fluido Supercrítico , Anfetamina/química , Espectrometria de Massas em Tandem/métodos , Cromatografia com Fluido Supercrítico/métodos , Formiatos , Cromatografia Líquida de Alta Pressão/métodos
12.
Anal Sci Adv ; 4(7-8): 236-243, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38716303

RESUMO

Electromembrane extraction (EME) is a microextraction technique where charged analytes are extracted from an aqueous sample solution, through a liquid membrane, and into an aqueous acceptor, under the influence of an external electric field. The liquid membrane is a few microliters of organic solvent immobilized in a polymeric support membrane. EME is a green technique and provides high selectivity. The selectivity is controlled by the direction and magnitude of the electric field, the chemical composition of the liquid membrane and the pH. Recently, commercial prototype equipment for EME was launched based on the use of conductive vials, and interest in EME is expected to increase. The current article is a tutorial and discusses the principle and practical work with EME. The practical information is related to the commercial prototype equipment but is valid also for other technical configurations of EME. The tutorial is intended to give readers a fundamental understanding of EME, which is required for method development and operation, and for avoiding common pitfalls.

13.
Anal Chim Acta ; 1208: 339829, 2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35525588

RESUMO

In sample preparation, simultaneous extraction of analytes of very different polarity from biological matrixes represents a challenge. In this work, verapamil hydrochloride (VRP), amitriptyline (AMP), tyramine (TYR), atenolol (ATN), metopropol (MTP) and nortriptyline (NRP) were used as basic model analytes and simultaneously extracted from urine samples by liquid-phase microextraction (LPME) in a microfluidic device. The model analytes (target compounds) were pharmaceuticals with 0.4 < log P < 5. Different organic solvents and mixtures of them were investigated as supported liquid membrane (SLM), and a mixture of 2:1 (v/v) tributyl phosphate (TBP) and dihexyl ether (DHE) was found to be highly efficient for the simultaneous extraction of the non-polar and polar model analytes. TBP reduced the intrinsic hydrophobicity of the SLM and facilitated extraction of polar analytes, while DHE served to minimize trapping of non-polar analytes. Sample and acceptor phase composition were adjusted to pH 12 and pH 1.5, respectively. Urine samples were pumped into the microfluidic system at 1 µL min-1 and the extraction was completed in 7 min. Recoveries exceeded 78% for the target analytes, and the relative standard deviation (n = 4) was below 7% in all cases. Using five microliters of SLM, the microfluidic extraction system showed good long-term stability, and the same SLM was used for more than 18 consecutive extractions.


Assuntos
Microextração em Fase Líquida , Microfluídica , Éteres , Humanos , Dispositivos Lab-On-A-Chip , Membranas Artificiais , Preparações Farmacêuticas , Solventes
14.
J Chromatogr A ; 1664: 462769, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-34998024

RESUMO

The present paper defines the optimal extraction window (OEW) for three-phase membrane-based liquid-phase microextraction (MP-LPME) in terms of analyte polarity (log P), and anchors this to existing theories for equilibrium partitioning and kinetics. Using deep eutectic solvents (DES) as supported liquid membranes (SLM), we investigated how the OEW was affected by ionic-, hydrogen bond and π-π interactions between the SLM and analyte. Eleven basic model analytes in the range -0.4 < log P < 5.0 were extracted by MB-LPME in a 96-well format. Extraction was performed from 250 µL standard solution in 25 mM phosphate buffer (pH 7.0) into 50 µL of 10 mM HCl acceptor solution (pH 2.0) with mixtures of coumarin, camphor, DL-menthol, and thymol, with and without the ionic carrier di(2-ethylhexyl) phosphate (DEHP), as the SLM. The OEW with pure DES was in the range 2 < log P < 5, and low SLM aromaticity was favorable for the extraction of non-polar analytes. Here, extraction recoveries up to 98% were obtained. Upon addition of DEHP to the SLMs, the OEW shifted to the range -0.5 < log P < 2, and a combination of 5% DEHP and moderate aromaticity resulted in extraction recoveries up to 80% for the polar analytes. Extraction with ionic carrier was inefficient for the non-polar analytes, due to excessive trapping in the SLM. The results from our study show that LPME performs optimally in a relatively narrow log P-window of ≈ 2-3 units and that the OEW is primarily affected by ionic carrier and aromaticity.


Assuntos
Microextração em Fase Líquida , Preparações Farmacêuticas , Solventes Eutéticos Profundos , Cinética , Membranas Artificiais
15.
J Pharm Biomed Anal ; 210: 114549, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34998075

RESUMO

Breast milk analysis provides useful information about acute newborn exposure to harmful substances, such as psychoactive drugs abused by a nursing mother. Since breast milk represents a complex matrix with large amounts of interfering compounds, a comprehensive sample pre-treatment is necessary. This work focuses on determination of amphetamines and synthetic cathinones in human breast milk by microextraction techniques (liquid-phase microextraction and electromembrane extraction), and their comparison to more conventional treatment methods (protein precipitation, liquid-liquid extraction, and salting-out assisted liquid-liquid extraction). The aim of this work was to optimize and validate all the extraction procedures and thoroughly assess their advantages and disadvantages with special regard to their routine clinical use. The applicability of the extractions was further verified by the analysis of six real samples collected from breastfeeding mothers suspected of amphetamine abuse. The membrane microextraction techniques turned out to be the most advantageous as they required low amounts of organic solvents but still provided efficient sample clean-up, excellent quantification limit (0.5 ng mL-1), and good recovery (81-91% and 40-89% for electromembrane extraction and liquid-phase microextraction, respectively). The traditional liquid-liquid extraction as well as the salting-out assisted liquid-liquid extraction showed comparable recoveries (41-85% and 63-88%, respectively), but higher quantification limits (2.5 ng mL-1 and 5 ng mL-1, respectively). Moreover, these methods required multiple operating steps and were time consuming. Protein precipitation was fast and simple, but it demonstrated poor sample clean-up, low recovery (56-58%) and high quantification limit (5 ng mL-1). Based on the overall results, microextraction methods can be considered promising candidates, even for routine laboratory use.


Assuntos
Microextração em Fase Líquida , Leite Humano , Anfetaminas , Feminino , Humanos , Recém-Nascido , Limite de Detecção , Extração Líquido-Líquido , Solventes
16.
Talanta ; 240: 123175, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972062

RESUMO

In this work, the effect of sample matrix on electromembrane extraction (EME) was investigated for the first time using cathinones (log P < 1.0) as polar basic model analytes. Ten supported liquid membranes (SLMs) were tested for EME from spiked buffer solutions, urine, and whole blood samples, respectively. For buffer solutions, SLMs containing aromatic solvents provided higher EME recovery than non-aromatic solvents, which confirmed the significance of cation-π interactions for EME of basic substances. Interestingly, when applied to urine and whole blood samples, aromatic SLMs were less efficient, while non-aromatic SLMs containing abundant hydrogen-bond acidity/basicity were efficient. These observations were explained by SLM fouling, and the antifouling property of the SLM was clearly dependent on the nature of the SLM solvent. Accordingly, a binary SLM containing aromatic 1-ethyl-2-nitrobenzene (ENB) and non-aromatic 1-undecanol (1:1 v/v) was developed. This binary SLM was not prone to fouling, and provided high recoveries of cathinones from urine and whole blood. EME based on this SLM was optimized and evaluated in combination with liquid chromatography tandem mass spectrometry (LC-MS/MS), and the linear ranges with R2 ≥ 0.9903 for cathinones in whole blood and urine were 5-200 ng/mL and 1-200 ng/mL, respectively. The LOD and LOQ of cathinones were ranged from 0.12 to 0.54 ng/mL and 0.38-1.78 ng/mL, respectively. The repeatability and accuracy bias at three levels were ≤11% and within 10%, respectively. In addition, the matrix effect ranged from 88% to 118% was also in compliance with guidelines for bioanalytical method validation provided by the European Medicines Agency.


Assuntos
Membranas Artificiais , Espectrometria de Massas em Tandem , Alcaloides , Cromatografia Líquida , Solventes
17.
J Pharm Biomed Anal ; 207: 114407, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34634529

RESUMO

In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.


Assuntos
Técnicas Eletroquímicas , Membranas Artificiais
18.
J Sep Sci ; 45(1): 246-257, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562339

RESUMO

Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli- and microfluidic formats. These are much more early-stage activities, but applications among others related to organ-on-chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli- and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research.

19.
Anal Chim Acta ; 1184: 339038, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625271

RESUMO

Electromembrane extraction (EME), involving the migration of charged analytes across a supported liquid membrane (SLM) with an external power supply, is a promising sample preparation method in analytical chemistry. However, the presence of boundary double layers at the SLM/solution interfaces often restricts extraction efficiency. To avoid this, the current work proposed an ultrasound-assisted EME (UA-EME) method based on a novel type of supported semi-liquid membrane (SsLM). The characterizations showed that the SsLM was stable under ultrasound conditions. Ultrasound was found to reduce the boundary double layers and thus increase the mass transfer. Major operational parameters in UA-EME including ultrasound power density, temperature, applied voltage and extraction time were optimized with haloperidol, fluoxetine, and sertraline as model analytes. Under the optimal conditions, extraction recoveries of model analytes in water samples were in the range of 66.8%-91.6%. When this UA-EME method was coupled with LC-MS/MS for detection of the target analytes in human urine samples, the linear range of the analytical method was 10-1000 ng mL-1, with R2 > 0.997 for all analytes. The limits of detection (LOD) and limits of quantification (LOQ) were in the range of 1.7-2.1 ng mL-1 and 5.7-6.7 ng mL-1, respectively. The UA-EME expands the application field of ultrasound chemistry and will be very important in development of stable and fast sample preparation systems in the future.


Assuntos
Membranas Artificiais , Espectrometria de Massas em Tandem , Cromatografia Líquida , Humanos , Limite de Detecção , Soluções
20.
Artigo em Inglês | MEDLINE | ID: mdl-34624684

RESUMO

Conductive vial electromembrane extraction (EME) with prototype equipment was applied for the first time to extract lipophilic basic drugs from serum. With this equipment, traditional platinum electrodes were replaced with sample and acceptor vials made from a conductive polymer, making the electrodes fully integrated and disposable. EME was combined with UHPLC-MS/MS, and a method to determine selected psychoactive drugs (alimemazine, amitriptyline, atomoxetine, clomipramine, doxepin, duloxetine, fluvoxamine, levomepromazine, nortriptyline and trimipramine) and metabolites (desmethyl clomipramine and desmethyl doxepin) in serum was developed, optimized, and validated. Extractions were carried out with 50 V for 15 min from serum samples (100 µL) diluted 1:3 with formic acid (0.1% v/v), using 2-nitrophenyl octyl ether as the supported liquid membrane (SLM), and formic acid (0.1% v/v, 300 µL) as acceptor phase. Using conductive vial EME, the extraction of lipophilic drugs reached exhaustive or near-exhaustive conditions, with recoveries in the range 75-117%. The method demonstrated excellent accuracy and precision, with bias within ± 6%, and intra- and inter-day CVs ranging 0.9 - 6% and 2 - 6%, respectively. In addition, acceptor phases were completely free of glycerophosphocholines. EME-UHPLC-MS/MS was successfully applied in determination of psychoactive drugs in 30 patient samples, and the results were in agreement with the current hospital routine method at St. Olav University Hospital (Trondheim, Norway). Obtaining comparable results to well-established routine methods is highly important for future implementation of EME into routine laboratories. These results thus serve as motivation for further advancing the EME technology. Until now, EME has been carried out with laboratory-build equipment, and the introduction of commercially available standardized equipment is expected to have a positive impact on future research activity.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Técnicas Eletroquímicas/métodos , Psicotrópicos/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA