Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310701, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733269

RESUMO

Magnetic navigation systems are used to precisely manipulate magnetically responsive materials enabling the realization of new minimally invasive procedures using magnetic medical devices. Their widespread applicability has been constrained by high infrastructure demands and costs. The study reports on a portable electromagnetic navigation system, the Navion, which is capable of generating a large magnetic field over a large workspace. The system is easy to install in hospital operating rooms and transportable through health care facilities, aiding in the widespread adoption of magnetically responsive medical devices. First, the design and implementation approach for the system are introduced and its performance is characterized. Next, in vitro navigation of different microrobot structures is demonstrated using magnetic field gradients and rotating magnetic fields. Spherical permanent magnets, electroplated cylindrical microrobots, microparticle swarms, and magnetic composite bacteria-inspired helical structures are investigated. The navigation of magnetic catheters is also demonstrated in two challenging endovascular tasks: 1) an angiography procedure and 2) deep navigation within the circle of Willis. Catheter navigation is demonstrated in a porcine model in vivo to perform an angiography under magnetic guidance.

2.
Adv Mater ; 32(52): e2005652, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33191553

RESUMO

Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA