Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(10): 2551-2564, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36151926

RESUMO

The oral microbiota is a highly complex and diversified part of the human microbiome. Being located at the interface between the human body and the exterior environment, this microbiota can deepen our understanding of the environmental impacts on the global status of human health. This research topic has been well addressed in Westernized populations, but these populations only represent a fraction of human diversity. Papua New Guinea hosts very diverse environments and one of the most unique human biological diversities worldwide. In this study we performed the first known characterization of the oral microbiome in 85 Papua New Guinean individuals living in different environments, using a qualitative and quantitative approach. We found a significant geographical structure of the Papua New Guineans oral microbiome, especially in the groups most isolated from urban spaces. In comparison to other global populations, two bacterial genera related to iron absorption were significantly more abundant in Papua New Guineans and Aboriginal Australians, which suggests a shared oral microbiome signature. Further studies will be needed to confirm and explore this possible regional-specific oral microbiome profile.


Assuntos
Microbiota , Boca , Humanos , Austrália , Geografia , Microbiota/genética , Papua Nova Guiné , Boca/microbiologia
2.
Porto Biomed J ; 7(1): e171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35146178

RESUMO

Few reports of SARS-CoV-2 reinfection by antigenically similar variants are well documented. The interplay between natural acquired immunity, escape by emerging variants, and protective measures in the healthcare setting is considered in this description of the first phylogenetically confirmed SARS-CoV-2 reinfection in Portugal.

4.
Viruses ; 13(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200621

RESUMO

Field epidemiology and viral sequencing provide a comprehensive characterization of transmission chains and allow a better identification of superspreading events. However, very few examples have been presented to date during the COVID-19 pandemic. We studied the first COVID-19 cluster detected in Portugal (59 individuals involved amongst extended family and work environments), following the return of four related individuals from work trips to Italy. The first patient to introduce the virus would be misidentified following the traditional field inquiry alone, as shown by the viral sequencing in isolates from 23 individuals. The results also pointed out family, and not work environment, as the primary mode of transmission.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , SARS-CoV-2/genética , COVID-19/prevenção & controle , Estudos de Casos e Controles , Família , Genoma Viral , Humanos , Itália/epidemiologia , Filogenia , Portugal/epidemiologia , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , Doença Relacionada a Viagens , Sequenciamento Completo do Genoma
6.
Microorganisms ; 9(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540596

RESUMO

A few molecularly proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases of symptomatic reinfection are currently known worldwide, with a resolved first infection followed by a second infection after a 48 to 142-day intervening period. We report a multiple-component study of a clinically severe and prolonged viral shedding coronavirus disease 2019 (COVID-19) case in a 17-year-old Portuguese female. She had two hospitalizations, a total of 19 RT-PCR tests, mostly positive, and criteria for releasing from home isolation at the end of 97 days. The viral genome was sequenced in seven serial samples and in the diagnostic sample from her infected mother. A human genome-wide array (>900 K) was screened on the seven samples, and in vitro culture was conducted on isolates from three late samples. The patient had co-infection by two SARS-CoV-2 lineages, which were affiliated in distinct clades and diverging by six variants. The 20A lineage was absolute at the diagnosis (shared with the patient's mother), but nine days later, the 20B lineage had 3% frequency, and two months later, the 20B lineage had 100% frequency. The 900 K profiles confirmed the identity of the patient in the serial samples, and they allowed us to infer that she had polygenic risk scores for hospitalization and severe respiratory disease within the normal distributions for a Portuguese population cohort. The early-on dynamic co-infection may have contributed to the severity of COVID-19 in this otherwise healthy young patient, and to her prolonged SARS-CoV-2 shedding profile.

7.
Hum Mol Genet ; 30(R1): R138-R145, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33461217

RESUMO

Sub-Saharan Africa is the most promising region of the world to conduct high-throughput studies to unveil adaptations to infectious diseases due to several reasons, namely, the longest evolving time-depth in the Homo sapiens phylogenetic tree (at least two-third older than any other worldwide region); the continuous burden of infectious diseases (still number one in health/life threat); and the coexistence of populations practising diverse subsistence modes (nomadic or seminomadic hunter-gatherers and agropastoralists, and sedentary agriculturalists, small urban and megacity groups). In this review, we will present the most up-to-date results that shed light on three main hypotheses related with this adaptation. One is the hypothesis of coevolution between host and pathogen, given enough time for the establishment of this highly dynamic relationship. The second hypothesis enunciates that the agricultural transition was responsible for the increase of the infectious disease burden, due to the huge expansion of the sedentary human population and the cohabitation with domesticates as main reservoirs of pathogens. The third hypothesis states that the boosting of our immune system against pathogens by past selection may have resulted in maladaptation of the developed hygienic societies, leading to an increase of allergic, inflammatory and autoimmune disorders. Further work will enlighten the biological mechanisms behind these main adaptations, which can be insightful for translation into diagnosis, prognosis and treatment interventions.


Assuntos
Adaptação Fisiológica , População Negra/genética , Doenças Transmissíveis/genética , África Subsaariana , Agricultura , Humanos , Filogenia , Seleção Genética
8.
Microorganisms ; 9(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503840

RESUMO

The continuous characterization of genome-wide diversity in population and case-cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.

9.
J Hum Genet ; 65(10): 875-887, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32483274

RESUMO

New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50-65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania.


Assuntos
Etnicidade/genética , Migração Humana/história , Adulto , Sudeste Asiático , Austrália , Etnicidade/história , Feminino , Genoma Mitocondrial , Fenômenos Geológicos , Haplótipos/genética , História Antiga , Humanos , Funções Verossimilhança , Masculino , Nova Guiné , Papua Nova Guiné , Filogenia , Filogeografia , Tasmânia
10.
Cancers (Basel) ; 12(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231135

RESUMO

In colon cancer, the prognostic value of macrophages is controversial, and it is still unknown how hypoxia modulates macrophage-cancer cell crosstalk. To unravel this, co-cultures of human primary macrophages and colon cancer cells were performed at 20% and 1% O2, followed by characterization of both cellular components. Different colon cancer patient cohorts were analyzed for hypoxia and immune markers, and their association with patient overall survival was established. A positive correlation between HIF1A and CD68 in colon cancer patients was identified but, unexpectedly, in cases with higher macrophage infiltration, HIF1A expression was associated with a better prognosis, in contrast to breast, gastric, and lung cancers. Under hypoxia, co-cultures' secretome indicated a shift towards a pro-inflammatory phenotype. These alterations occurred along with increased macrophage phagocytic activity and decreased SIRPα expression. Cancer cells were more invasive and exhibited higher CD47 expression. We hypothesize that the better prognosis associated with HIF1AHighCD68High tumors could occur due to macrophagic pro-inflammatory pressure. Indeed, we found that tumors HIF1AHighCD68High expressed increased levels of CD8A, which is positively correlated with HIF1A. In conclusion, we show that in colon cancer, hypoxia drives macrophages into a pro-inflammatory phenotype, concomitant with increased infiltration of anti-tumor immune cells, favoring better disease outcome.

11.
Mol Biol Evol ; 36(3): 575-586, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649405

RESUMO

The Arabian Peninsula (AP) was an important crossroad between Africa, Asia, and Europe, being the cradle of the structure defining these main human population groups, and a continuing path for their admixture. The screening of 741,000 variants in 420 Arabians and 80 Iranians allowed us to quantify the dominant sub-Saharan African admixture in the west of the peninsula, whereas South Asian and Levantine/European influence was stronger in the east, leading to a rift between western and eastern sides of the Peninsula. Dating of the admixture events indicated that Indian Ocean slave trade and Islamization periods were important moments in the genetic makeup of the region. The western-eastern axis was also observable in terms of positive selection of diversity conferring lactose tolerance, with the West AP developing local adaptation and the East AP acquiring the derived allele selected in European populations and existing in South Asia. African selected malaria resistance through the DARC gene was enriched in all Arabian genomes, especially in the western part. Clear European influences associated with skin and eye color were equally frequent across the Peninsula.


Assuntos
Árabes/genética , Fluxo Gênico , Genoma Humano , Humanos , Oriente Médio , Filogeografia
12.
Infect Genet Evol ; 62: 60-72, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29673983

RESUMO

Population genetics theory predicted that rare frequent markers would be the main contributors for heritability of complex diseases, but meta-analyses of genome-wide association studies are revealing otherwise common markers, present in all population groups, as the identified candidate genes. In this work, we applied a population-genetics informed meta-analysis to 10 markers located in seven genes said to be associated with dengue fever disease. Seven markers (in PLCE1, CD32, CD209, OAS1 and OAS3 genes) have high-frequency and the other three (in MICB and TNFA genes) have intermediate frequency. Most of these markers have high discriminatory power between population groups, but their frequencies follow the rules of genetic drift, and seem to have not been under strong selective pressure. There was a good agreement in directional consistency across trans-ethnic association signals, in East Asian and Latin American cohorts, with heterogeneity generated by randomness between studies and especially by low sample sizes. This led to confirm the following significant associations: with DF, odds ratio of 0.67 for TNFA-rs1800629-A; with DHF, 0.82 for CD32-rs1801274-G; with DSS, 0.55 for OAS3-rs2285933-G, 0.80 for PLCE1-rs2274223-G and 1.32 for MICB-rs3132468-C. The overall genetic risks confirmed sub-Saharan African populations and descendants as the best protected against the severer forms of the disease, while Southeast and Northeast Asians are the least protected ones. European and close neighbours are the best protected against dengue fever, while, again, Southeast and Northeast Asians are the least protected ones. These risk scores provide important predictive information for the largely naïve European and North American regions, as well as for Africa where misdiagnosis with other hemorrhagic diseases is of concern.


Assuntos
Dengue/genética , Predisposição Genética para Doença , Regulação da Expressão Gênica , Marcadores Genéticos , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA