Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(2): e13528, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873155

RESUMO

A novel series of quinazoline-based agents bearing triazole-acetamides 8a-l were designed and synthesized. All the obtained compounds were tested for in vitro cytotoxic activities against three human cancer cell lines named HCT-116, MCF-7, and HepG2, as well as a normal cell line WRL-68 after 48 and 72 h. The results implied that quinazoline-oxymethyltriazole compounds exhibited moderate to good anticancer potential. The most potent derivative against HCT-116 was 8a (X = 4-OCH3 and R = H) with IC50 values of 10.72 and 5.33 µM after 48 and 72 h compared with doxorubicin with IC50 values of 1.66 and 1.21 µM, respectively. The same trend was seen in the HepG2 cancerous cell line in which 8a recorded the best results with IC50 values of 17.48 and 7.94 after 48 and 72 h, respectively. The cytotoxic analysis against MCF-7 showed that 8f with IC50 = 21.29 µM (48 h) exhibited the best activity, while compounds 8k (IC50 = 11.32 µM) and 8a (IC50 = 12.96 µM), known as the most effective cytotoxic agents after 72 h. Doxorubicin as positive control exhibited IC50 values of 1.15 and 0.82 µM after 48 and 72 h, respectively. Noteworthy, all derivatives showed limited toxicity against the normal cell line. Moreover, docking studies were also presented to understand the interactions between these novel derivatives and possible targets.

2.
Sci Rep ; 12(1): 14870, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050498

RESUMO

The control of postprandial hyperglycemia is an important target in the treatment of type 2 diabetes mellitus (T2DM). As a result, targeting α-glucosidase as the most important enzyme in the breakdown of carbohydrates to glucose that leads to an increase in postprandial hyperglycemia is one of the treatment processes of T2DM. In the present work, a new class of benzimidazole-Schiff base hybrids 8a-p has been developed based on the potent reported α-glucosidase inhibitors. These compounds were synthesized by sample recantations, characterized by 1H-NMR, 13C-NMR, FT-IR, and CHNS elemental analysis, and evaluated against α-glucosidase. All new compounds, with the exception of inactive compound 8g, showed excellent inhibitory activities (60.1 ± 3.6-287.1 ± 7.4 µM) in comparison to acarbose as the positive control (750.0 ± 10.5). Kinetic study of the most potent compound 8p showed a competitive type of inhibition (Ki value = 60 µM). In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the title new compounds over the active site of α-glucosidase. In silico druglikeness analysis and ADMET prediction of the most potent compounds demonstrated that these compounds were druglikeness and had satisfactory ADMET profile.


Assuntos
Benzimidazóis , Hiperglicemia , Bases de Schiff , alfa-Glucosidases , Benzimidazóis/química , Benzimidazóis/farmacologia , Domínio Catalítico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Bases de Schiff/química , Bases de Schiff/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , alfa-Glucosidases/efeitos dos fármacos , alfa-Glucosidases/metabolismo
3.
Sci Rep ; 12(1): 13827, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970866

RESUMO

A new series of N-thioacylated ciprofloxacin 3a-n were designed and synthesized based on Willgerodt-Kindler reaction. The results of in vitro urease inhibitory assay indicated that almost all the synthesized compounds 3a-n (IC50 = 2.05 ± 0.03-32.49 ± 0.32 µM) were more potent than standard inhibitors, hydroxyurea (IC50 = 100 ± 2.5 µM) and thiourea (IC50 = 23 ± 0.84 µM). The study of antibacterial activity against Gram-positive species (S. aureus and S. epidermidis) revealed that the majority of compounds were more active than ciprofloxacin as the standard drug, and 3h derivative bearing 3-fluoro group had the same effect as ciprofloxacin against Gram-negative bacteria (P. aeruginosa and E. coli). Based on molecular dynamic simulations, compound 3n exhibited pronounced interactions with the critical residues of the urease active site and mobile flap pocket so that the quinolone ring coordinated toward the metal bi-nickel center and the essential residues at the flap site like His593, His594, and Arg609. These interactions caused blocking the active site and stabilized the movement of the mobile flap at the entrance of the active site channel, which significantly reduced the catalytic activity of urease. Noteworthy, 3n also exhibited IC50 values of 5.59 ± 2.38 and 5.72 ± 1.312 µg/ml to inhibit urease enzyme against C. neoformans and P. vulgaris in the ureolytic assay.


Assuntos
Antibacterianos , Ciprofloxacina , Inibidores Enzimáticos , Urease , Antibacterianos/química , Ciprofloxacina/farmacologia , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade , Urease/antagonistas & inibidores
4.
BMC Chem ; 16(1): 57, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35909126

RESUMO

A novel series of diphenylquinoxaline-6-carbohydrazide hybrids 7a-o were rationally designed and synthesized as anti-diabetic agents. All synthesized compounds 7a-o were screened as possible α-glucosidase inhibitors and exhibited good inhibitory activity with IC50 values in the range of 110.6 ± 6.0 to 453.0 ± 4.7 µM in comparison with acarbose as the positive control (750.0 ± 10.5 µM). An exception in this trend came back to a compound 7k with IC50 value > 750 µM. Furthermore, the most potent derivative 7e bearing 3-fluorophenyl moiety was further explored by kinetic studies and showed the competitive type of inhibition. Additionally, the molecular docking of all derivatives was performed to get an insight into the binding mode of these derivatives within the active site of the enzyme. In silico assessments exhibited that 7e was well occupied in the binding pocket of the enzyme through favorable interactions with residues, correlating to the experimental results.

5.
Chem Biodivers ; 19(7): e202100964, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35675562

RESUMO

Tyrosinase plays a pivotal role in the hyperpigmentation and enzymatic browning of fruit and vegetable. Therefore, tyrosinase inhibitors can be of interest in industries as depigmentation compounds as well as anti-browning agents. In the present study, a series of chlorophenylquinazolin-4(3H)-one derivative were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1 H-NMR, 13 C-NMR, and elemental analysis. Among the synthesized derivatives, compound 8l was proved to be the most potent inhibitor with an IC50 value of 25.48±1.19 µM. Furthermore, the results of the molecular docking study showed that this compound fitted well in the active site of tyrosinase with the binding score of -10.72.


Assuntos
Agaricales , Monofenol Mono-Oxigenase , Inibidores Enzimáticos/química , Hidrazinas , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Relação Estrutura-Atividade
6.
BMC Chem ; 16(1): 35, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585608

RESUMO

BACKGROUND: Cancer is the most cause of morbidity and mortality, and a major public health problem worldwide. In this context, two series of quinazolinone 5a-e and dihydroquinazolinone 10a-f compounds were designed, synthesized as cytotoxic agents. METHODOLOGY: All derivatives (5a-e and 10a-f) were synthesized via straightforward pathways and elucidated by FTIR, 1H-NMR, CHNS elemental analysis, as well as the melting point. All the compounds were evaluated for their in vitro cytotoxicity effects using the MTT assay against two human cancer cell lines (MCF-7 and HCT-116) using doxorubicin as the standard drug. The test derivatives were additionally docked into the PARP10 active site using Gold software. RESULTS AND DISCUSSION: Most of the synthesized compounds, especially 5a and 10f were found to be highly potent against both cell lines. Synthesized compounds demonstrated IC50 in the range of 4.87-205.9 µM against HCT-116 cell line and 14.70-98.45 µM against MCF-7 cell line compared with doxorubicin with IC50 values of 1.20 and 1.08 µM after 72 h, respectively, indicated the plausible activities of the synthesized compounds. CONCLUSION: The compounds quinazolinone 5a-e and dihydroquinazolinone 10a-f showed potential activity against cancer cell lines which can lead to rational drug designing of the cytotoxic agents.

7.
Mol Divers ; 26(2): 1311-1344, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34120303

RESUMO

The present review offers an apt summary of amide bond formation with carboxylic acid substrates by taking advantage of several methods. Carboxamides can be regarded as a substantial part of organic and medicinal chemistry due to their utility in synthesizing peptides, lactams, and more than 25% of familiar drugs. Moreover, they play a leading role in the synthesis of bioactive products with anticancer, antifungal, and antibacterial properties. The data are arranged based on the type and amount of reagents used to conduct amidation and are also divided into the following categories: catalytic amidation of carboxylic acids, non-catalytic amidation, and transamidation.


Assuntos
Amidas , Ácidos Carboxílicos , Amidas/química , Ácidos Carboxílicos/química , Catálise , Indicadores e Reagentes , Peptídeos
8.
Arch Pharm (Weinheim) ; 354(12): e2100179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34467580

RESUMO

Thirteen new phenoxy-biscoumarin-N-phenylacetamide derivatives (7a-m) were designed based on a molecular hybridization approach as new α-glucosidase inhibitors. These compounds were synthesized with high yields and evaluated in vitro for their inhibitory activity against yeast α-glucosidase. The obtained results revealed that a significant proportion of the synthesized compounds showed considerable α-glucosidase-inhibitory activity in comparison to acarbose as a positive control. Representatively, 2-(4-(bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)phenoxy)-N-(4-bromophenyl)acetamide (7f), with IC50 = 41.73 ± 0.38 µM against α-glucosidase, was around 18 times more potent than acarbose (IC50 = 750.0 ± 10.0 µM). This compound was a competitive α-glucosidase inhibitor. Molecular modeling and dynamic simulation of these compounds confirmed the obtained results through in vitro experiments. Prediction of the druglikeness/ADME/toxicity of the compound 7f and comparison with the standard drug acarbose showed that the new compound 7f was probably better than the standard drug in terms of toxicity.


Assuntos
Acetanilidas/farmacologia , Cumarínicos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Acarbose/farmacologia , Acetanilidas/síntese química , Acetanilidas/química , Animais , Células CACO-2 , Cumarínicos/síntese química , Cumarínicos/química , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ratos , Relação Estrutura-Atividade
9.
Sci Rep ; 11(1): 10607, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012008

RESUMO

A new series of arylmethylene hydrazine derivatives bearing 1,3-dimethylbarbituric moiety 7a-o were designed, synthesized, and evaluated for their in vitro urease inhibitory activity. All the title compounds displayed high anti-urease activity, with IC50 values in the range of 0.61 ± 0.06-4.56 ± 0.18 µM as compared to the two standard inhibitors hydroxyurea (IC50 = 100 ± 0.15 µM) and thiourea (IC50 = 23 ± 1.7 µM). Among the synthesized compounds, compound 7h with 2-nitro benzylidene group was found to be the most potent compound. Kinetic study of this compound revealed that it is a mix-mode inhibitor against urease. Evaluation of the interaction modes of the synthesized compounds in urease active site by molecular modeling revealed that that compounds with higher urease inhibitor activity (7h, 7m, 7c, 7l, 7i, and 7o, with IC50 of 0.61, 0.86, 1.2, 1.34, 1.33, 1.94 µM, respectively) could interact with higher number of residues, specially Arg609, Cys592 (as part of urease active site flap) and showed higher computed free energy, while compounds with lower urease activity (7f, 7n, 7g, and 7a with IC50 of 3.56, 4.56, 3.62 and 4.43 µM, respectively) and could not provide the proper interaction with Arg609, and Cys592 as the key interacting residues along with lower free binding energy. MD investigation revealed compound 7h interacted with Arg609 and Cys592 which are of the key residues at the root part of mobile flap covering the active site. Interacting with the mentioned residue for a significant amount of time, affects the flexibility of the mobile flap covering the active site and causes inhibition of the ureolytic activity. Furthermore, in silico physico-chemical study of compounds 7a-o predicted that all these compounds are drug-likeness with considerable orally availability.

10.
Arch Pharm (Weinheim) ; 354(9): e2000471, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33999440

RESUMO

A new series of quinoxalin-1,3,4-oxadiazole (10a-l) derivatives was synthesized and evaluated against some metabolic enzymes including human carbonic anhydrase (hCA) isoenzymes I and II (carbonic anhydrases I and II), cholinesterase (acetylcholinesterase and butyrylcholinesterase), and α-glucosidase. Obtained data revealed that all the synthesized compounds were more potent as compared with the used standard inhibitors against studied target enzymes. Among the synthesized compounds, 4-fluoro derivative (10f) against hCA I, 4-chloro derivative (10i) against hCA II, 3-fluoro derivative (10e) against acetylcholinesterase and butyrylcholinesterase, and 3-bromo derivative (10k) against α-glucosidase were the most potent compounds with inhibitory activity around 1.8- to 7.37-fold better than standard inhibitors. Furthermore, docking studies of these compounds were performed at the active site of their target enzymes.


Assuntos
Oxidiazóis/farmacologia , Quinoxalinas/farmacologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
11.
Int J Biol Macromol ; 170: 1-12, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352155

RESUMO

In this study, novel quinazolinone derivatives 7a-n were synthesized and evaluated against metabolic enzymes including α-glycosidase, acetylcholinesterase, butyrylcholinesterase, human carbonic anhydrase I, and II. These compounds exhibited high inhibitory activities in comparison to used standard inhibitors with Ki values in the range of 19.28-135.88 nM for α-glycosidase (Ki value for standard inhibitor = 187.71 nM), 0.68-23.01 nM for acetylcholinesterase (Ki value for standard inhibitor = 53.31 nM), 1.01-29.56 nM for butyrylcholinesterase (Ki value for standard inhibitor = 58.16 nM), 10.25-126.05 nM for human carbonic anhydrase I (Ki value for standard inhibitor = 248.18 nM), and 13.46-178.35 nM for human carbonic anhydrase II (Ki value for standard inhibitor = 323.72). Furthermore, the most potent compounds against each enzyme were selected in order to evaluate interaction modes of these compounds in the active site of the target enzyme. Cytotoxicity assay of the title compounds 7a-n against cancer cell lines MCF-7 and LNCaP demonstrated that these compounds do not show significant cytotoxic effects.


Assuntos
Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/química , Inibidores de Glicosídeo Hidrolases/química , Quinazolinonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/toxicidade , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/toxicidade , Humanos , Cinética , Células MCF-7 , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias da Próstata/patologia , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Quinazolinonas/toxicidade , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Eur J Med Chem ; 95: 492-9, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25847767

RESUMO

A novel series of 2-arylquinazolinones 7a-o bearing trans-stilbene moiety were designed, synthesized, and evaluated against human breast cancer cell lines including human breast adenocarcinoma (MCF-7 and MDA-MB-231) and human ductal breast epithelial tumor (T-47D). Among the tested compounds, the sec-butyl derivative 7h showed the best profile of activity (IC50 < 5 µM) against all cell lines, being 2-fold more potent than standard drug, etoposide. Our investigation revealed that the cytotoxic activity was significantly affected by N3-alkyl substituents. Furthermore, the morphological analysis by acridine orange/ethidium bromide double staining test and flow cytometry analysis indicated that the prototype compound 7h can induce apoptosis in MCF-7 and MDA-MB-231 cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Estilbenos/química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células MCF-7 , Quinazolinonas/química , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA