Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Dairy Sci ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762108

RESUMO

Udder conformation is directly related to milk yield, cow health, workability, and welfare. Automatic milking systems (AMS, also known as milking robots) have become popular worldwide, and the number of dairy farms adopting these systems have increased considerably over the past years. In each milking visit, AMS record the location of the 4 teats as Cartesian coordinates in a xyz plan, which can then be used to derive udder conformation traits. AMS generate a large amount of per milking visit data for individual cows, which contribute to an accurate assessment of important traits such as udder conformation without the addition of human classifier errors (in subjective scoring systems). Therefore, the primary objectives of this study were to estimate genomic-based genetic parameters for udder conformation traits derived from AMS records in North American Holstein cattle and to assess the genetic correlation between the derived traits for evaluating the feasibility of multi-trait genomic selection for breeding cows that are more suitable for milking in AMS. The Cartesian teat coordinates measured during each milking visit were collected by 36 milking robots in 4,480 Holstein cows from 2017 to 2021, resulting in 5,317,488 records. A total of 4,118 of these Holstein cows were also genotyped for 57,600 single nucleotide polymorphisms. Five udder conformation traits were derived: udder balance (UB, mm), udder depth (UD, mm), front teat distance (FTD, mm), rear teat distance (RTD, mm), and distance front-rear (DFR, mm). In addition, 2 traits directly related to cow productivity in the system were added to the study: daily milk yield (DY) and milk electroconductivity (EC; as an indicator of mastitis). Variance components and genetic parameters for UB, UD, FTD, RTD, DFR, DY, and EC were estimated based on repeatability animal models. The estimates of heritability (±standard error, SE) for UB, UD, FTD, RTD, DFR, DY, and EC were 0.41 ± 0.02, 0.79 ± 0.01, 0.53 ± 0.02, 0.40 ± 0.02, 0.65 ± 0.02, 0.20 ± 0.02, and 0.46 ± 0.02, respectively. The repeatability estimates (±SE) for UB, UD, FTD, RTD, and DFR were 0.82 ± 0.01, 0.93 ± 0.01, 0.87 ± 0.01, 0.83 ± 0.01, and 0.88 ± 0.01, respectively. The strongest genetic correlations were observed between the FTD and RTD (0.54 ± 0.03), UD and DFR (-0.47 ± 0.03), DFR and FTD (0.32 ± 0.03), and UD and FTD (-0.31 ± 0.03). These results suggest that udder conformation traits derived from Cartesian coordinates from AMS are moderately to highly heritable. Furthermore, the moderate genetic correlations between these traits should be considered when developing selection sub-indexes. The most relevant genetic correlations between traits related to cow milk productivity and udder conformation traits were between UD and EC (-0.25 ± 0.03) and between DFR and DY (0.30 ± 0.04), in which both genetic correlations are favorable. These findings will contribute to the design of genomic selection schemes for improving udder conformation in North American Holstein cattle, especially in precision dairy farms.

3.
J Anim Breed Genet ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807564

RESUMO

Temperament (docility) is a key breeding goal in the cattle industry due to its direct relationship with animal welfare, cattle handler's safety and animal productivity. Over the past six decades, numerous studies have reported heritability estimates for temperament-related traits in cattle populations ranging from low to high values. Therefore, the primary objective of this study was to perform a comprehensive systematic review with meta-analysis to obtain weighted estimates of heritability for temperament-related traits in worldwide cattle populations. After data editing and quality control, 106 studies were included in the systematic review, of which 29.2% and 70.8% reported estimates of heritability for temperament-related traits in dairy and beef cattle populations, respectively. Meta-analyses were performed for 95 heritability estimates using a random model approach. The weighted heritability estimates were as follow: (a) flight score at weaning = 0.23 (95% CI: 0.15-0.32); (b) flight speed at weaning = 0.30 (95% CI: 0.26-0.33); (c) joint analysis of flight speed and flight score at weaning = 0.27 (95% CI: 0.22-0.31); (d) flight speed at yearling = 0.26 (95% CI: 0.21-0.30); (e) joint analysis of flight speed at weaning and yearling = 0.27 (95% CI: 0.24-0.30); (f) movement score = 0.12 (95% CI: 0.08-0.15); (g) crush score at weaning = 0.21 (95% CI: 0.17-0.25); (h) pen score at weaning = 0.27 (95% CI: 0.19-0.34); (i) pen score at yearling = 0.20 (95% CI: 0.17-0.23); (j) joint analysis of pen score at weaning and yearling = 0.22 (95% CI: 0.18-0.26); (k) cow's aggressiveness at calving = 0.10 (95% CI: 0.01-0.19); (l) general temperament = 0.13 (95% CI: 0.06-0.19); (m) milking temperament = 0.16 (95% CI: 0.11-0.21); and (n) joint analysis of general and milking temperament = 0.14 (95% CI: 0.11-0.18). The heterogeneity index ranged from 0% to 77%, and the Q-test was significant (p < 0.05) for four single-trait meta-analyses. In conclusion, temperament is moderately heritable in beef cattle populations, and flight speed at weaning had the highest weighted heritability estimate. Moreover, between-study heterogeneity was low or moderate in beef cattle traits, suggesting reasonable standardization across studies. On the other hand, low-weighted heritability and high between-study heterogeneity were estimated for temperament-related traits in dairy cattle, suggesting that more studies are needed to better understand the genetic inheritance of temperament in dairy cattle populations.

4.
Theriogenology ; 218: 214-222, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350227

RESUMO

Calving interval (CI) measures the number of days between two consecutive calves of the same cow, and previous studies based on phenotype and pedigree data reported low heritability for this trait. However, the genetic architecture of CI in the Nellore breed was not evaluated based on genomic data. Thus, this study aimed to estimate the heritability based on genomic data and carry out a genome-wide association study (GWAS) for CI in the Nellore breed, using 12,599 pedigree records, 5078 CI records, and 3818 animals genotyped with 50k SNPchip panel. Both quality control and GWAS were performed in BLUPF90 family packages, which use the single-step genomic best linear unbiased predictor (ssGBLUP) method. The average CI was 427.6 days, with a standard deviation of 106.9 and a total range of 270-730 days. The heritability estimate was 0.04 ± 0.04. The p-values of GWAS analysis resulted in a genomic inflation factor (lambda) of 1.08. The only significant SNP (rs136725686) at the genome-wide level (p-value = 1.53E-06) was located on BTA13. Other 19 SNPs were significant at the chromosome-wide level, distributed on BTA1, 2, 3, 6, 10, 13, 14, 17, 18, 22, and 26. Functional annotation analysis found thirty-six protein-coding genes, including genes related to cell cycle (RAD21, BCAR3), oocyte function (LHX8, CLPX, UTP23), immune system (TXK, TEC, NFATC2), endocrine function (LRRFIP2, GPR158), estrous cycle (SLC38A7), and female fertility (CCK, LYZL4, TRAK1, FOXP1, STAC). Therefore, CI is a complex trait with small heritability in Nellore cattle, and various biological processes may be involved with the genetic architecture of CI in Nellore cattle.


Assuntos
Estudo de Associação Genômica Ampla , Genoma , Bovinos/genética , Animais , Feminino , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Fenótipo , Genômica , Polimorfismo de Nucleotídeo Único
5.
J Dairy Sci ; 107(7): 4758-4771, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38395400

RESUMO

Identifying genome-enabled methods that provide more accurate genomic prediction is crucial when evaluating complex traits such as dairy cow behavior. In this study, we aimed to compare the predictive performance of traditional genomic prediction methods and deep learning algorithms for genomic prediction of milking refusals (MREF) and milking failures (MFAIL) in North American Holstein cows measured by automatic milking systems (milking robots). A total of 1,993,509 daily records from 4,511 genotyped Holstein cows were collected by 36 milking robot stations. After quality control, 57,600 SNPs were available for the analyses. Four genomic prediction methods were considered: Bayesian least absolute shrinkage and selection operator (LASSO), multiple layer perceptron (MLP), convolutional neural network (CNN), and GBLUP. We implemented the first 3 methods using the Keras and TensorFlow libraries in Python (v.3.9) but the GBLUP method was implemented using the BLUPF90+ family programs. The accuracy of genomic prediction (mean square error) for MREF and MFAIL was 0.34 (0.08) and 0.27 (0.08) based on LASSO, 0.36 (0.09) and 0.32 (0.09) for MLP, 0.37 (0.08) and 0.30 (0.09) for CNN, and 0.35 (0.09) and 0.31(0.09) based on GBLUP, respectively. Additionally, we observed a lower reranking of top selected individuals based on the MLP versus CNN methods compared with the other approaches for both MREF and MFAIL. Although the deep learning methods showed slightly higher accuracies than GBLUP, the results may not be sufficient to justify their use over traditional methods due to their higher computational demand and the difficulty of performing genomic prediction for nongenotyped individuals using deep learning procedures. Overall, this study provides insights into the potential feasibility of using deep learning methods to enhance genomic prediction accuracy for behavioral traits in livestock. Further research is needed to determine their practical applicability to large dairy cattle breeding programs.


Assuntos
Genômica , Aprendizado de Máquina , Animais , Bovinos/genética , Feminino , Indústria de Laticínios/métodos , Genótipo , Lactação/genética , Leite , Algoritmos , Fenótipo , Comportamento Animal
6.
J Dairy Sci ; 107(5): 3062-3079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38056564

RESUMO

Selection for resilience indicator (RIND) traits in Holstein cattle is becoming an important breeding objective as the worldwide population is expected to be exposed to increased environmental stressors due to both climate change and changing industry standards. However, genetic correlations between RIND and productivity indicator (PIND) traits, which are already being selected for and have the most economic value, are often unfavorable. As a result, it is necessary to fully understand these genetic relationships when incorporating novel traits into selection indices, so that informed decisions can be made to fully optimize selection for both groups of traits. In the past 2 decades, there have been many estimates of RIND traits published in the literature, albeit in small populations. To provide valuable pooled summary estimates, a random-effects meta-analysis was conducted for heritability and genetic correlation estimates for PIND and RIND traits in worldwide Holstein cattle. In total, 926 heritability estimates for 9 PIND and 27 RIND traits, along with 362 estimates of genetic correlation (PIND × RIND traits) were collected. Resilience indicator traits were grouped into the following subgroups: Metabolic Diseases, Hoof Health, Udder Health, Fertility, Heat Tolerance, Longevity, and Other. Pooled estimates of heritability for PIND traits ranged from 0.201 ± 0.05 (energy-corrected milk) to 0.377 ± 0.06 (protein content), while pooled estimates of heritability for RIND traits ranged from 0.032 ± 0.02 (incidence of lameness, incidence of milk fever) to 0.497 ± 0.05 (measures of body weight). Pooled estimates of genetic correlations ranged from -0.360 ± 0.25 (protein content vs. milk acetone concentration) to 0.535 ± 0.72 (measures of fat-to-protein ratio vs. milk acetone concentration). Additionally, out of 243 potential genetic correlations between PIND and RIND traits that could have been reported, only 40 had enough published estimates to implement the meta-analysis model. Our results confirmed that the interactions between PIND and RIND traits are complex, and all relationships should be evaluated when incorporating novel traits into selection indices. This study provides a valuable reference for breeders looking to incorporate RIND traits for Holstein cattle into selection indices.

7.
J Dairy Sci ; 107(4): 2207-2230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37939841

RESUMO

Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.


Assuntos
Doenças dos Bovinos , Dermatite , Dermatite Digital , Doenças do Pé , Úlcera do Pé , Casco e Garras , Úlcera Cutânea , Bovinos/genética , Animais , Doenças do Pé/genética , Doenças do Pé/veterinária , Estudo de Associação Genômica Ampla/veterinária , Dermatite Digital/genética , Úlcera/veterinária , Hiperplasia/veterinária , Doenças dos Bovinos/genética , Fenótipo , Úlcera do Pé/veterinária , Genômica , Dermatite/veterinária , Hemorragia/veterinária , América do Norte
8.
J Dairy Sci ; 107(2): 1035-1053, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37776995

RESUMO

Breeding more resilient animals will benefit the dairy cattle industry in the long term, especially as global climate changes become more severe. Previous studies have reported genetic parameters for various milk yield-based resilience indicators, but the underlying genomic background of these traits remain unknown. In this study, we conducted GWAS of 62,029 SNPs with 4 milk yield-based resilience indicators, including the weighted occurrence frequency (wfPert) and accumulated milk losses (dPert) of milk yield perturbations, and log-transformed variance (LnVar) and lag-1 autocorrelation (rauto) of daily yield residuals. These variables were previously derived from 5.6 million daily milk yield records from 21,350 lactations (parities 1-3) of 11,787 North American Holstein cows. The average daily milk yield (ADMY) throughout lactation was also included to compare the shared genetic background of resilience indicators with milk yield. The differential genetic background of these indicators was first revealed by the significant genomic regions identified and significantly enriched biological pathways of positional candidate genes, which confirmed the genetic difference among resilience indicators. Interestingly, the functional analyses of candidate genes suggested that the regulation of intestinal homeostasis is most likely affecting resilience derived based on variability in milk yield. Based on Mendelian randomization analyses of multiple instrumental SNPs, we further found an unfavorable causal association of ADMY with LnVar. In conclusion, the resilience indicators evaluated are genetically different traits, and there are causal associations of milk yield with some of the resilience indicators evaluated. In addition to providing biological insights into the molecular regulation mechanisms of resilience derived based on variability in milk yield, this study also indicates the need for developing selection indexes combining multiple indicator traits and taking into account their genetic relationship for breeding more resilient dairy cattle.


Assuntos
Leite , Resiliência Psicológica , Feminino , Bovinos/genética , Animais , Leite/metabolismo , Estudo de Associação Genômica Ampla/veterinária , Análise da Randomização Mendeliana/veterinária , Lactação/genética , Fenótipo , Genômica , América do Norte
9.
J Dairy Sci ; 107(4): 2175-2193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923202

RESUMO

Precision livestock farming technologies, such as automatic milk feeding machines, have increased the availability of on-farm data collected from dairy operations. We analyzed feeding records from automatic milk feeding machines to evaluate the genetic background of milk feeding traits and bovine respiratory disease (BRD) in North American Holstein calves. Data from 10,076 preweaning female Holstein calves were collected daily over a period of 6 yr (3 yr included per-visit data), and daily milk consumption (DMC), per-visit milk consumption (PVMC), daily sum of drinking duration (DSDD), drinking duration per-visit, daily number of rewarded visits (DNRV), and total number of visits per day were recorded over a 60-d preweaning period. Additional traits were derived from these variables, including total consumption and duration variance (TCV and TDV), feeding interval, drinking speed (DS), and preweaning stayability. A single BRD-related trait was evaluated, which was the number of times a calf was treated for BRD (NTT). The NTT was determined by counting the number of BRD incidences before 60 d of age. All traits were analyzed using single-step genomic BLUP mixed-model equations and fitting either repeatability or random regression models in the BLUPF90+ suite of programs. A total of 10,076 calves with phenotypic records and genotypic information for 57,019 SNP after the quality control were included in the analyses. Feeding traits had low heritability estimates based on repeatability models (0.006 ± 0.0009 to 0.08 ± 0.004). However, total variance traits using an animal model had greater heritabilities of 0.21 ± 0.023 and 0.23 ± 0.024, for TCV and TDV, respectively. The heritability estimates increased with the repeatability model when using only the first 32 d preweaning (e.g., PVMC = 0.040 ± 0.003, DMC = 0.090 ± 0.009, DSDD = 0.100 ± 0.005, DS = 0.150 ± 0.007, DNRV = 0.020 ± 0.002). When fitting random regression models (RRM) using the full dataset (60-d period), greater heritability estimates were obtained (e.g., PVMC = 0.070 [range: 0.020, 0.110], DMC = 0.460 [range: 0.050, 0.680], DSDD = 0.180 [range: 0.010, 0.340], DS = 0.19 [range: 0.070, 0.430], DNRV = 0.120 [range: 0.030, 0.450]) for the majority of the traits, suggesting that RRM capture more genetic variability than the repeatability model with better fit being found for RRM. Moderate negative genetic correlations of -0.59 between DMC and NTT were observed, suggesting that automatic milk feeding machines records have the potential to be used for genetically improving disease resilience in Holstein calves. The results from this study provide key insights of the genetic background of early in-life traits in dairy cattle, which can be used for selecting animals with improved health outcomes and performance.


Assuntos
Doenças dos Bovinos , Doenças Respiratórias , Animais , Bovinos , Feminino , Leite , Dieta/veterinária , Desmame , Indústria de Laticínios/métodos , Doenças dos Bovinos/epidemiologia , Doenças Respiratórias/veterinária , América do Norte , Ração Animal/análise
10.
Genet Sel Evol ; 55(1): 95, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129768

RESUMO

BACKGROUND: Automatic and continuous recording of vaginal temperature (TV) using wearable sensors causes minimal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature variation under heat stress (HS) conditions. However, the genetic basis of TV in lactating sows from a longitudinal perspective is still unknown. The objectives of this study were to define statistical models and estimate genetic parameters for TV in lactating sows using random regression models, and identify genomic regions and candidate genes associated with HS indicators derived from automatically-recorded TV. RESULTS: Heritability estimates for TV ranged from 0.14 to 0.20 over time (throughout the day and measurement period) and from 0.09 to 0.18 along environmental gradients (EG, - 3.5 to 2.2, which correspond to dew point values from 14.87 to 28.19 ËšC). Repeatability estimates of TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 to 0.77, respectively. TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) and repeatability (0.64), indicating that this period might be the most suitable for recording TV for genetic selection purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. Two important genomic regions on chromosomes 10 (59.370-59.998 Mb) and16 (21.548-21.966 Mb) were identified. These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic regions across 14 chromosomes were identified for TV. For the three EG classes, respectively 18, 15, and 14 associated genomic windows were identified for TV, respectively. Each time-period and EG class had uniquely enriched genes with identified specific biological functions, including regulation of the nervous system, metabolism and hormone production. CONCLUSIONS: TV is a heritable trait with substantial additive genetic variation and represents a promising indicator trait to select pigs for improved heat tolerance. Moderate GxE for TV exist, indicating potential re-ranking of selection candidates across EG. TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular and behavioral mechanisms.


Assuntos
Lactação , Termotolerância , Suínos , Animais , Feminino , Lactação/genética , Temperatura , Genoma , Genômica
11.
Vet Parasitol ; 323: 110047, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37857178

RESUMO

This study aimed to identify genomic regions, pathways, and putative candidate genes associated with resistance to gastrointestinal nematode in Santa Ines sheep. The phenotypic information comprised 5529 records from 1703 naturally infected animals. After genomic data quality control, 37,511 SNPs from 589 animals were available. The weighted single-step approach for genome-wide association study was performed to estimate the SNP effects and variances accounted by 10-SNP sliding windows. Confirming the polygenic nature of the studied traits, 20, 22, 21, and 19 genomic windows that explained more than 0.5% of the additive genetic variance were identified for fecal egg counts (FEC), Famacha© (FAM), packed cell volume (PCV), and total plasma protein (TPP), respectively. A total of 81, 122, 106, and 101 protein-coding genes were found in windows associated with FEC, FAM, PCV, and TPP, respectively. Several protein-coding genes related to the immune system and inflammatory response functions were identified within those genomic regions, such as ADCY9, ADRB2, BRAF, CADM1, CCL20, CD70, CREBBP, FNBP1, HTR4, IL16, IL22, IL26, MAPK8, NDFIP1, NLRC3, PAK5, PLCB1, PLCB4, ROCK1, TEK, TNFRSF12A, and VAV1. Functional enrichment analysis by DAVID tool also revealed many significant (P < 0.05) pathways and Gene Ontology terms that could be related to resistance to gastrointestinal nematode in Santa Ines sheep, such as chemokine signaling pathway (oas04062), cAMP signaling pathway (oas04024), cGMP-PKG signaling pathway (Oas04022), platelet activation (Oas04611), Rap1 signaling pathway (oas04015), and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen (GO:0016705). These results contribute to improving the knowledge of the genetic architecture of resistance to gastrointestinal nematode in Santa Ines sheep.

12.
Transl Anim Sci ; 7(1): txad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841322

RESUMO

The decision of premature culling cows directly impacts the profitability of dairy farms. A comprehensive characterization of the primary causes of culling reasons would greatly improve both management and selection objectives in dairy cattle breeding programs. Therefore, this study aimed to analyze the temporal frequencies of 34 culling reasons in Canadian Holstein cows. After data editing and quality control, records from 3,096,872 cows culled from 9,683 herds spread across Canada were used for the analyses covering the periods from 1996 to 2020. Reproductive issues were the main culling reason accounting for 23.02%, followed by milk production (20.82%), health (20.39%), conformation problems (13.69%), economic factors (13.10%), accidents (5.67%), age-related causes (1.67%), and workability (1.63%). Nearly fifty-eight percent of cows were culled after 47 months of age. The observed frequencies of culling due to economic factors were lower than expected from 1996 to 2014 and higher than expected between 2015 and 2020. Reproduction issues had the highest culling frequencies during fall (24.54%), winter (24.02%), and spring (22.51%), while health issues were the most frequent (22.51%) culling reason in the summer season. Health issues (25.50%) and milk production (27.71%) were the most frequent culling reasons in the provinces of Quebec and Ontario, respectively. Reproductive issues showed the highest frequency across climates based on the Köppen climate classification, except for Csb (Dry-summer subtropical or Mediterranean climate) and Bsk (Middle latitude steppe climate), which correspond to small regions in Canada, where production was the most frequent culling reason (29.42% and 21.56%, respectively). Reproductive and milk performance issues were the two main culling reasons in most ecozones, except in Boreal Shield and Atlantic Marine, where health issues had the highest frequencies (25.12 and 23.75%, respectively). These results will contribute to improving management practices and selective decisions to reduce involuntary culling of Holstein cows.

13.
J Dairy Sci ; 106(6): 4133-4146, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105879

RESUMO

Considering the increasing challenges imposed by climate change and the need to improve animal welfare, breeding more resilient animals capable of better coping with environmental disturbances is of paramount importance. In dairy cattle, resilience can be evaluated by measuring the longitudinal occurrences of abnormal daily milk yield throughout lactation. Aiming to estimate genetic parameters for dairy cattle resilience, we collected 5,643,193 daily milk yield records on automatic milking systems (milking robots) and milking parlors across 21,350 lactations 1 to 3 of 11,787 North American Holstein cows. All cows were genotyped with 62,029 SNPs. After determining the best fitting models for each of the 3 lactations, daily milk yield residuals were used to derive 4 resilience indicators: weighted occurrence frequency of yield perturbations (wfPert), accumulated milk losses of yield perturbations (dPert), and log-transformed variance (LnVar) and lag-1 autocorrelation (rauto) of daily yield residuals. The indicator LnVar presented the highest heritability estimates (±standard error), ranging from 0.13 ± 0.01 in lactation 1 to 0.15 ± 0.02 in lactation 2; the other 3 indicators had relatively lower heritabilities across the 3 lactations (0.01-0.06). Based on bivariate analyses of each resilience indicator across lactations, stronger genetic correlations were observed between lactations 2 and 3 (0.88-0.96) than between lactations 1 and 2 or 3 (0.34-0.88) for dPert, LnVar, and rauto. For the pairwise comparisons of different resilience indicators within each lactation, dPert had the strongest genetic correlations with wfPert (0.64) and rauto (0.53) in lactation 1, whereas the correlations in lactations 2 and 3 were more variable and showed relatively high standard errors. The genetic correlation results indicated that different resilience indicators across lactations might capture additional biological mechanisms and should be considered as different traits in genetic evaluations. We also observed favorable genetic correlations of these resilience indicators with longevity and Net Merit index, but further biological validation of these resilience indicators is needed. In conclusion, this study provided genetic parameter estimates for different resilience indicators derived from daily milk yields across the first 3 lactations in Holstein cattle, which will be useful when potentially incorporating these traits in dairy cattle breeding schemes.


Assuntos
Lactação , Leite , Feminino , Bovinos/genética , Animais , Lactação/genética , Fenótipo , Genômica , América do Norte
14.
BMC Genomics ; 24(1): 150, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973650

RESUMO

BACKGROUND: Given the economic relevance of fertility and reproductive traits for the beef cattle industry, investigating their genetic background and developing effective breeding strategies are paramount. Considering their late and sex-dependent phenotypic expression, genomic information can contribute to speed up the rates of genetic progress per year. In this context, the main objectives of this study were to estimate variance components and genetic parameters, including heritability and genetic correlations, for fertility, female precocity, and semen production and quality (andrological attributes) traits in Nellore cattle incorporating genomic information. RESULTS: The heritability estimates of semen quality traits were low-to-moderate, while moderate-to-high estimates were observed for semen morphological traits. The heritability of semen defects ranged from low (0.04 for minor semen defects) to moderate (0.30 for total semen defects). For seminal aspect (SMN_ASPC) and bull reproductive fitness (BULL_FIT), low (0.19) and high (0.69) heritabilities were observed, respectively. The heritability estimates for female reproductive traits ranged from 0.16 to 0.39 for rebreeding of precocious females (REBA) and probability of pregnancy at 14 months (PP14), respectively. Semen quality traits were highly genetically correlated among themselves. Moderate-to-high genetic correlations were observed between the ability to remain productive in the herd until four years of age (stayability; STAY) and the other reproductive traits, indicating that selection for female reproductive performance will indirectly contribute to increasing fertility rates. High genetic correlations between BULL_FIT and female reproductive traits related to precocity (REBA and PP14) and STAY were observed. The genetic correlations between semen quality and spermatic morphology with female reproductive traits ranged from -0.22 (REBA and scrotal circumference) to 0.48 (REBA and sperm vigor). In addition, the genetic correlations between REBA with semen quality traits ranged from -0.23 to 0.48, and with the spermatic morphology traits it ranged from -0.22 to 0.19. CONCLUSIONS: All male and female fertility and reproduction traits evaluated are heritable and can be improved through direct genetic or genomic selection. Selection for better sperm quality will positively influence the fertility and precocity of Nellore females. The findings of this study will serve as background information for designing breeding programs for genetically improving semen production and quality and reproductive performance in Nellore cattle.


Assuntos
Análise do Sêmen , Sêmen , Gravidez , Bovinos/genética , Masculino , Animais , Feminino , Análise do Sêmen/veterinária , Reprodução/genética , Fertilidade/genética , Fenótipo
15.
Elife ; 122023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927625

RESUMO

The hippocampus has been proposed to encode environments using a representation that contains predictive information about likely future states, called the successor representation. However, it is not clear how such a representation could be learned in the hippocampal circuit. Here, we propose a plasticity rule that can learn this predictive map of the environment using a spiking neural network. We connect this biologically plausible plasticity rule to reinforcement learning, mathematically and numerically showing that it implements the TD-lambda algorithm. By spanning these different levels, we show how our framework naturally encompasses behavioral activity and replays, smoothly moving from rate to temporal coding, and allows learning over behavioral timescales with a plasticity rule acting on a timescale of milliseconds. We discuss how biological parameters such as dwelling times at states, neuronal firing rates and neuromodulation relate to the delay discounting parameter of the TD algorithm, and how they influence the learned representation. We also find that, in agreement with psychological studies and contrary to reinforcement learning theory, the discount factor decreases hyperbolically with time. Finally, our framework suggests a role for replays, in both aiding learning in novel environments and finding shortcut trajectories that were not experienced during behavior, in agreement with experimental data.


Assuntos
Aprendizagem , Neurônios , Aprendizagem/fisiologia , Neurônios/fisiologia , Reforço Psicológico , Terapia Comportamental , Cognição , Modelos Neurológicos , Potenciais de Ação/fisiologia , Plasticidade Neuronal/fisiologia
16.
J Dairy Sci ; 106(4): 2613-2629, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797177

RESUMO

The number of dairy farms adopting automatic milking systems (AMS) has considerably increased around the world aiming to reduce labor costs, improve cow welfare, increase overall performance, and generate a large amount of daily data, including production, behavior, health, and milk quality records. In this context, this study aimed to (1) estimate genomic-based variance components for milkability traits derived from AMS in North American Holstein cattle based on random regression models; and (2) derive and estimate genetic parameters for novel behavioral indicators based on AMS-derived data. A total of 1,752,713 daily records collected using 36 milking robot stations and 70,958 test-day records from 4,118 genotyped Holstein cows were used in this study. A total of 57,600 SNP remained after quality control. The daily-measured traits evaluated were milk yield (MY, kg), somatic cell score (SCS, score unit), milk electrical conductivity (EC, mS), milking efficiency (ME, kg/min), average milk flow rate (FR, kg/min), maximum milk flow rate (FRM, kg/min), milking time (MT, min), milking failures (MFAIL), and milking refusals (MREF). Variance components and genetic parameters for MY, SCS, ME, FR, FRM, MT, and EC were estimated using the AIREMLF90 software under a random regression model fitting a third-order Legendre orthogonal polynomial. A threshold Bayesian model using the THRGIBBS1F90 software was used for genetically evaluating MFAIL and MREF. The daily heritability estimates across days in milk (DIM) ranged from 0.07 to 0.28 for MY, 0.02 to 0.08 for SCS, 0.38 to 0.49 for EC, 0.45 to 0.56 for ME, 0.43 to 0.52 for FR, 0.47 to 0.58 for FRM, and 0.22 to 0.28 for MT. The estimates of heritability (± SD) for MFAIL and MREF were 0.02 ± 0.01 and 0.09 ± 0.01, respectively. Slight differences in the genetic correlations were observed across DIM for each trait. Strong and positive genetic correlations were observed among ME, FR, and FRM, with estimates ranging from 0.94 to 0.99. Also, moderate to high and negative genetic correlations (ranging from -0.48 to -0.86) were observed between MT and other traits such as SCS, ME, FR, and FRM. The genetic correlation (± SD) between MFAIL and MREF was 0.25 ± 0.02, indicating that both traits are influenced by different sets of genes. High and negative genetic correlations were observed between MFAIL and FR (-0.58 ± 0.02) and MFAIL and FRM (-0.56 ± 0.02), indicating that cows with more MFAIL are those with lower FR. The use of random regression models is a useful alternative for genetically evaluating AMS-derived traits measured throughout the lactation. All the milkability traits evaluated in this study are heritable and have demonstrated selective potential, suggesting that their use in dairy cattle breeding programs can improve dairy production efficiency in AMS.


Assuntos
Indústria de Laticínios , Leite , Feminino , Bovinos/genética , Animais , Teorema de Bayes , Lactação/genética , Fenótipo , Genômica , América do Norte
17.
J Dairy Res ; 90(4): 353-356, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38420730

RESUMO

This study investigated the age at first calving in Holstein heifers and its impact on various production parameters. A sample of 737 Holstein heifers born between 2015 and 2018 and finishing their first lactations between 2018 and 2020 was included. Cluster analysis revealed three groups based on age at first calving: high precocity, medium precocity and low precocity. Medium-precocity group exhibited the highest 305-day milk yield and peak milk production. Additionally, the same group demonstrated superior mean production per lactation, 305-day milk protein content, and 305-day milk yield. The lowest somatic cell count was found in the low-precocity group. In conclusion, medium-precocity cows showed better results such as higher 305-day milk yield and peak milk production.


Assuntos
Lactação , Leite , Gravidez , Animais , Bovinos , Feminino , Leite/química , Parto , Proteínas do Leite/análise , Paridade
18.
J Dairy Res ; 90(4): 343-346, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38410079

RESUMO

This research communication describes the reproductive and productive parameters and somatic cell count (SCC) of primiparous and multiparous cows from specialized dairy Holstein herds in South region of Brazil, and correlates these parameters using test-day records. A total of 24 011 records of animals from 75 producers obtained between 2017 and 2018 were used. The variables analyzed included milk production, SCC, milk fat, protein and urea nitrogen contents and reproductive characteristics (number of services per conception, service period and percentage of pregnant cows). Data were analyzed using multivariate logistic regression and the statistical differentiation between the classes of SCC and milk production. Milk production, SCC, number of services per conception and service period were all higher in multiparous cows. The percentage of pregnant cows was higher when the SCC was less than 200 000 cells/ml and was higher in primiparous cows. There was no adverse effect of milk production on reproductive parameters in high producing cows (>40 kg milk/d), however, the percentage of pregnant cows with this production level was significantly higher in multiparous cows. In conclusion, the milk production level need not affect the reproduction of specialized dairy cows if the animals are kept under adequate environmental conditions.


Assuntos
Lactação , Leite , Gravidez , Feminino , Bovinos , Animais , Reprodução , Paridade , Contagem de Células/veterinária
19.
Animals (Basel) ; 12(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552446

RESUMO

Body conformation traits assessed based on visual scores are widely used in Zebu cattle breeding programs. The aim of this study was to identify genomic regions and biological pathways associated with body conformation (CONF), finishing precocity (PREC), and muscling (MUSC) in Nellore cattle. The measurements based on visual scores were collected in 20,807 animals raised in pasture-based systems in Brazil. In addition, 2775 animals were genotyped using a 35 K SNP chip, which contained 31,737 single nucleotide polymorphisms after quality control. Single-step GWAS was performed using the BLUPF90 software while candidate genes were identified based on the Ensembl Genes 69. PANTHER and REVIGO platforms were used to identify key biological pathways and STRING to create gene networks. Novel candidate genes were revealed associated with CONF, including ALDH9A1, RXRG, RAB2A, and CYP7A1, involved in lipid metabolism. The genes associated with PREC were ELOVL5, PID1, DNER, TRIP12, and PLCB4, which are related to the synthesis of long-chain fatty acids, lipid metabolism, and muscle differentiation. For MUSC, the most important genes associated with muscle development were SEMA6A, TIAM2, UNC5A, and UIMC1. The polymorphisms identified in this study can be incorporated in commercial genotyping panels to improve the accuracy of genomic evaluations for visual scores in beef cattle.

20.
Front Genet ; 13: 858970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923708

RESUMO

Purunã is a composite beef cattle breed, developed in Southern Brazil by crossing the Angus, Charolais, Canchim, and Caracu breeds. The goal of this study was to perform the first genetic characterization of the Purunã breed, based on both pedigree and genomic information. For this, 100 randomly selected animals were genotyped, and 11,205 animals born from 1997 to 2019 had pedigree information. The genetic analyses performed were principal component analysis, admixture, phylogenic tree, pedigree and genomic inbreeding, linkage disequilibrium (LD), effective population size (Ne), consistency of the gametic phase, runs of homozygosity (ROH), heterozygosity-enriched regions (HERs), and functional analyses of the ROH and HER regions identified. Our findings indicate that Purunã is more genetically related to the Charolais, Canchim, and Angus breeds than Caracu or Nellore. The levels of inbreeding were shown to be small based on all the metrics evaluated and ranged from -0.009 to 0.029. A low (-0.12-0.31) correlation of the pedigree-based inbreeding compared to all the genomic inbreeding coefficients evaluated was observed. The LD average was 0.031 (±0.0517), and the consistency of the gametic phase was shown to be low for all the breed pairs, ranging from 0.42 to 0.27 to the distance of 20 Mb. The Ne values based on pedigree and genomic information were 158 and 115, respectively. A total of 1,839 ROHs were found, and the majority of them are of small length (<4 Mb). An important homozygous region was identified on BTA5 with pathways related to behavioral traits (sensory perception, detection of stimulus, and others), as well as candidate genes related to heat tolerance (MY O 1A), feed conversion rate (RDH5), and reproduction (AMDHD1). A total of 1,799 HERs were identified in the Purunã breed with 92.3% of them classified within the 0.5-1 Mb length group, and 19 HER islands were identified in the autosomal genome. These HER islands harbor genes involved in growth pathways, carcass weight (SDCBP), meat and carcass quality (MT2A), and marbling deposition (CISH). Despite the genetic relationship between Purunã and the founder breeds, a multi-breed genomic evaluation is likely not feasible due to their population structure and low consistency of the gametic phase among them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA