Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37998951

RESUMO

The current climate change context raises the demand for reducing energy and environmental impacts while keeping an economic balance and building users' comfort. Thermal insulation solutions are potential allies in ensuring the adequacy of existing buildings for challenging sustainability requirements. In this scenario, silica-aerogel-fibre-based thermal renders are innovative solutions for which integrated approaches still lack information, and they should be compared with benchmark multilayer solutions, such as those based on expanded polystyrene (EPS), extruded polystyrene (XPS), mineral wool (MW), and insulated corkboard (ICB), to evidence their prospective economic, environmental, and energy benefits. This paper quantifies the optimum insulation thicknesses, life cycle savings, payback periods, and environmental impacts of innovative thermal renders compared to conventional thermal insulation materials when applied as a retrofit in existing facade walls. The results show that cost-optimised thermal renders with sisal fibres led to the best overall performance. Higher heating needs led to higher optimum render thicknesses and life cycle savings. With a 0.02 m thickness, aerogel-fibre-based thermal renders outperformed other materials in terms of heating-degree days (HDD) from 1000 °C·day onwards; they can save approximately EUR 60∙m-2, 1000 MJ∙m-2, and 100 kg CO2 eq∙m-2 while presenting a U-value 13% lower throughout their 30-year lifetime when compared with the second-best multilayer solution with XPS.

2.
Gels ; 9(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998988

RESUMO

In this work, aerogel renders were enhanced with fibres for use in new building walls, emphasising a Mediterranean climate. The main novelty of the study relies on an integrated evaluation of the aerogel-based fibre-enhanced thermal renders from environmental, energy and economic approaches. Therefore, optimum insulation thicknesses, life cycle savings, payback periods, abiotic depletion potential from fossil fuels (ADP-ff) and global warming potential (GWP) impacts were quantified as a function of the energy consumption. The cost optimisation of aerogel-based renders enabled a reduction from 2477.4 to 1021.7 EUR∙m-3 for the reference formulation, and the sisal-optimised render led to the best-integrated performance. A higher DD* (degree-days equivalent) led to higher optimum thicknesses (the Azores required 0.02 m and 0.01 m and Bragança 0.06 m and 0.03 m for cost-optimised and non-optimised thermal renders with sisal fibre, respectively). The optimum thickness related to the ADP-ff and GWP impacts was higher, 0.04 m for the Azores and 0.09 m for Bragança. A steeper decrease in the annual energy consumption occurred for thermal renders up to 0.02 m in the Azores and 0.04 m in Bragança. Aerogel-based fibre-enhanced thermal renders had benefits, mainly from 600 DD* onwards.

3.
Materials (Basel) ; 14(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576635

RESUMO

The widespread application of innovative thermal enhanced façade solutions requires an adequate durability evaluation. The present work intends to assess the durability of a new aerogel cement-based rendering system through the adaptation of different accelerated aging cycles, such as heating-freezing, freeze-thawing, and heat-cold. Several mechanical properties and also capillary and liquid water absorptions were tested for uncoated and coated specimens. A decrease in the mechanical strength, especially after freeze-thaw cycles, was observed. However, the water action promoted the late hydration of the cement paste contributing to the densification of the matrix and, consequently, the increase of the adhesive strength. Additionally, a decrease in the dynamic modulus of elasticity and an increase in the Poisson's ratio were observed after aging, which indicates a higher capacity of the render to adapt to substrate movements, contributing to a reduction of cracking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA