Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 181: 112267, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562546

RESUMO

BACKGROUND: Immune checkpoints and their ligands are important actors of lymphocytes and monocytes activation's regulation. Their expression level within T cells changes with aging. Despite the major impact of aging on monocytes, there is no data about the expression of ICs on monocytes from old patients. The objective of our study is to describe the expression of ICs and their ligands on monocytes from young individuals compared to old patients. METHODS: We included 18 old control (>75 years old), 10 young control (<55 years old) and 45 old patients with hip fracture (HF). Phenotypical and functional analyses were performed on cryopreserved PBMCs. RESULTS: There is a differential expression of immune checkpoints and their ligands within monocyte subtypes regardless of age at baseline. After stimulation, a differential expression of immune checkpoints in young subjects but not in old subjects was observed which would be in favor of a regulation defect in old subjects. We hypothesize that this lack of regulation could partially explain the excess production of pro-inflammatory cytokines by the stimulated monocytes in old subjects. In HF, we also observe a differential expression of immune checkpoints, especially in old patients with a poor prognosis. CONCLUSION: Our results suggest that the immune regulation which should take place post-acute stress may be affected in old individuals.


Assuntos
Citocinas , Monócitos , Humanos , Idoso , Ligantes , Citocinas/metabolismo , Envelhecimento , Linfócitos T
2.
Vaccine ; 41(13): 2270-2279, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36870875

RESUMO

For intradermal (ID) immunisation, novel needle-based delivery systems have been proposed as a better alternative to the Mantoux method. However, the penetration depth of needles in the human skin and its effect on immune cells residing in the different layers of the skin has not been analyzed. A novel and user-friendly silicon microinjection needle (Bella-muTM) has been developed, which allows for a perpendicular injection due to its short needle length (1.4-1.8 mm) and ultrashort bevel. We aimed to characterize the performance of this microinjection needle in the context of the delivery of a particle-based outer membrane vesicle (OMV) vaccine using an ex vivo human skin explant model. We compared the needles of 1.4 and 1.8 mm with the conventional Mantoux method to investigate the depth of vaccine injection and the capacity of the skin antigen-presenting cell (APC) to phagocytose the OMVs. The 1.4 mm needle deposited the antigen closer to the epidermis than the 1.8 mm needle or the Mantoux method. Consequently, activation of epidermal Langerhans cells was significantly higher as determined by dendrite shortening. We found that five different subsets of dermal APCs are able to phagocytose the OMV vaccine, irrespective of the device or injection method. ID delivery using the 1.4 mm needle of a OMV-based vaccine allowed epidermal and dermal APC targeting, with superior activation of Langerhans cells. This study indicates that the use of a microinjection needle improves the delivery of vaccines in the human skin.


Assuntos
Pele , Vacinas , Humanos , Injeções Intradérmicas/métodos , Microinjeções , Sistemas de Liberação de Medicamentos , Vesícula
3.
Front Immunol ; 11: 586124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244316

RESUMO

Background: Our previous work has demonstrated the benefits of transcutaneous immunization in targeting Langerhans cells and preferentially inducing CD8 T-cell responses. Methods: In this randomized phase Ib clinical trial including 20 HIV uninfected volunteers, we compared the safety and immunogenicity of the MVA recombinant vaccine expressing HIV-B antigen (MVA-B) by transcutaneous and intramuscular routes. We hypothesized that the quality of innate and adaptive immunity differs according to the route of immunization and explored the quality of the vector vaccine-induced immune responses. We also investigated the early blood transcriptome and serum cytokine levels to identify innate events correlated with the strength and quality of adaptive immunity. Results: We demonstrate that MVA-B vaccine is safe by both routes, but that the quality and intensity of both innate and adaptive immunity differ significantly. Transcutaneous vaccination promoted CD8 responses in the absence of antibodies and slightly affected gene expression, involving mainly genes associated with metabolic pathways. Intramuscular vaccination, on the other hand, drove robust changes in the expression of genes involved in IL-6 and interferon signalling pathways, mainly those associated with humoral responses, and also some levels of CD8 response. Conclusion: Thus, vaccine delivery route perturbs early innate responses that shape the quality of adaptive immunity. Clinical Trial Registration: http://ClinicalTrials.gov, identifier PER-073-13.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Vacinas contra a AIDS/efeitos adversos , Administração Cutânea , Anticorpos Antivirais/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1 , Humanos , Imunidade Celular/imunologia , Injeções Intramusculares , Vacinação/métodos , Vacinas de DNA , Vacinas Sintéticas/imunologia , Vacinas Virais/efeitos adversos
5.
J Proteomics ; 216: 103670, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-31991189

RESUMO

The skin plays a crucial role in host defences against microbial attack and the innate cells must provide the immune system with sufficient information to organize these defences. This unique feature makes the skin a promising site for vaccine administration. Although cellular innate immune events during vaccination have been widely studied, initial events remain poorly understood. Our aim is to determine molecular biomarkers of skin innate reaction after intradermal (i.d.) immunization. Using an ex vivo human explant model from healthy donors, we investigated by NanoLC-MS/MS analysis and MALDI-MSI imaging, to detect innate molecular events (lipids, metabolites, proteins) few hours after i.d. administration of seasonal trivalent influenza vaccine (TIV). This multimodel approach allowed to identify early molecules differentially expressed in dermal and epidermal layers at 4 and 18 h after TIV immunization compared with control PBS. In the dermis, the most relevant network of proteins upregulated were related to cell-to-cell signalling and cell trafficking. The molecular signatures detected were associated with chemokines such as CXCL8, a chemoattractant of neutrophils. In the epidermis, the most relevant networks were associated with activation of antigen-presenting cells and related to CXCL10. Our study proposes a novel step-forward approach to identify biomarkers of skin innate reaction. SIGNIFICANCE: To our knowledge, there is no study analyzing innate molecular reaction to vaccines at the site of skin immunization. What is known on skin reaction is based on macroscopic (erythema, redness…), microscopic (epidermal and dermal tissues) and cellular events (inflammatory cell infiltrate). Therefore, we propose a multimodal approach to analyze molecular events at the site of vaccine injection on skin tissue. We identified early molecular networks involved biological functions such cell migration, cell-to-cell interaction and antigen presentation, validated by chemokine expression, in the epidermis and dermis, then could be used as early indicator of success in immunization.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Injeções Intradérmicas , Estações do Ano , Espectrometria de Massas em Tandem , Vacinação/efeitos adversos
6.
Inflamm Bowel Dis ; 22(10): 2369-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27598740

RESUMO

BACKGROUND: Aside from cases of backwash ileitis, the ileal mucosa of patients with ulcerative colitis (UC), an idiotypic inflammatory bowel disease, has received little attention despite the fact that colitis is known to trigger alterations in morphology and/or functions of the small intestine remotely. METHODS: The ileal mucosa was studied in patients with UC and in a spontaneous model of colitis (Il10/Nox1 mice) mimicking the histological and clinical features of UC and was also studied in acute and chronic murine models of chemically induced colitis. Proliferation and apoptosis were assessed using morphological and immunohistological methods and Western blot analysis. Peyer's patch immune cell subsets were analyzed. Cytokines levels were quantified using quantitative PCR and Luminex xMAP technology. Total RNA from isolated ileal crypts was used for whole genome transcriptome analysis. RESULTS: The most striking features were an increased ileal crypt length associated with an enhanced cell proliferation of the transit-amplifying cells along with activation of the Wnt/ß-catenin and MAPkinase pathways. These changes did not result from intestinal inflammation as assessed by histology and/or pro-inflammatory cytokine expression levels. The increased proliferation rate was dependent on the duration but not on the severity of colitis and was observed in different mouse models of colitis, including the Il10/Nox1 model and 2,4,6-trinitrobenzenesulfonic acid-treated mice. Interestingly, the ileal mucosa of patients with UC also displayed longer crypts and enhanced cell proliferation compared with control patients. CONCLUSIONS: These data show that despite the absence of inflammation in the small intestine, alterations in the ileal mucosa homeostasis are present in UC.


Assuntos
Proliferação de Células/fisiologia , Colite Ulcerativa/fisiopatologia , Íleo/fisiopatologia , Mucosa Intestinal/fisiopatologia , Animais , Estudos de Casos e Controles , Colite Ulcerativa/etiologia , Colite Ulcerativa/patologia , Humanos , Mucosa Intestinal/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Trinitrobenzenossulfônico , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia
7.
PLoS One ; 9(7): e101669, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25014110

RESUMO

Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2α phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2α phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2α pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2α pathway could lead to the molecular remission needed to treat UC.


Assuntos
Colite Ulcerativa/etiologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Inflamação/etiologia , Interleucina-10/fisiologia , NADH NADPH Oxirredutases/fisiologia , Animais , Western Blotting , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 1 , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resposta a Proteínas não Dobradas
8.
J Clin Invest ; 122(6): 2239-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22565313

RESUMO

Intestinal barrier function requires intricate cooperation between intestinal epithelial cells and immune cells. Enteropathogens are able to invade the intestinal lymphoid tissue known as Peyer's patches (PPs) and disrupt the integrity of the intestinal barrier. However, the underlying molecular mechanisms of this process are poorly understood. In mice infected with Yersinia pseudotuberculosis, we found that PP barrier dysfunction is dependent on the Yersinia virulence plasmid and the expression of TLR-2 by hematopoietic cells, but not by intestinal epithelial cells. Upon TLR-2 stimulation, Y. pseudotuberculosis-infected monocytes activated caspase-1 and produced IL-1ß. In turn, IL-1ß increased NF-κB and myosin light chain kinase activation in intestinal epithelial cells, thus disrupting the intestinal barrier by opening the tight junctions. Therefore, Y. pseudotuberculosis subverts intestinal barrier function by altering the interplay between immune and epithelial cells during infection.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Mucosa Intestinal/imunologia , Nódulos Linfáticos Agregados/imunologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/imunologia , Animais , Células CACO-2 , Caspase 1/genética , Caspase 1/imunologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Células-Tronco Hematopoéticas/microbiologia , Células-Tronco Hematopoéticas/patologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/microbiologia , Monócitos/patologia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Nódulos Linfáticos Agregados/microbiologia , Nódulos Linfáticos Agregados/patologia , Transdução de Sinais/genética , Receptor 2 Toll-Like/genética , Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/patologia
9.
Gastroenterology ; 141(3): 1024-35, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21699776

RESUMO

BACKGROUND & AIMS: Ulcerative colitis (UC) is a chronic inflammatory disorder that affects the colonic epithelium. Epidemiology studies indicate an environmental component is involved in pathogenesis, although the primary changes in the digestive epithelium that cause an uncontrolled inflammatory response are not known. Animal studies have shown that altered endoplasmic reticulum (ER) stress response initiates intestinal inflammation in epithelial tissues, but abnormalities associated with ER stress have not been identified in patients with UC. METHODS: Using immunoblotting, real-time polymerase chain reaction, immunohistochemistry, and immunofluorescence analyses, we assessed ER stress signaling in uninflammed colonic mucosa from patients with UC and controls. Genome-wide microarray analysis of actively translated polysome-bound messenger RNA was performed using samples of unaffected mucosa from patients with UC, and data were compared with those from controls. RESULTS: Inositol-requiring kinase and activating transcription factor signaling pathways were activated in inactive colonic epithelium from patients with UC; these mediate proinflammatory and regenerative responses. Blocking phosphorylation of the translation initiation factor 2 (eIF2α), which mediates the integrated stress response, deregulated initiation of translation and reduced the numbers of stress granules in colonic epithelial cells from patients with UC. Genome-wide microarray analysis of actively translated, polysome-bound messenger RNA from patients revealed changes in protein translation that altered colonic epithelial barrier function (levels of detoxification and antioxidant enzymes and proteins that regulate the cell cycle, cell-cell adhesion, and secretion), compared with controls. CONCLUSIONS: Colonic mucosa samples from patients with UC have defects in the eIF2α pathway that controls protein translation and the cell stress response. This pathway might be investigated to identify new therapeutic targets for patients with UC.


Assuntos
Colite Ulcerativa/fisiopatologia , Colo/fisiopatologia , Retículo Endoplasmático/fisiologia , Mucosa Intestinal/fisiopatologia , Biossíntese de Proteínas/fisiologia , Estresse Fisiológico/fisiologia , Fator 6 Ativador da Transcrição/metabolismo , Biópsia , Estudos de Casos e Controles , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Regulação para Baixo/fisiologia , Endorribonucleases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas de Membrana/metabolismo , Análise em Microsséries , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
10.
PLoS One ; 5(10)2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957151

RESUMO

BACKGROUND: Ulcerative Colitis (UC) and Crohn's Disease (CD) are two chronic Inflammatory Bowel Diseases (IBD) affecting the intestinal mucosa. Current understanding of IBD pathogenesis points out the interplay of genetic events and environmental cues in the dysregulated immune response. We hypothesized that dysregulated microRNA (miRNA) expression may contribute to IBD pathogenesis. miRNAs are small, non-coding RNAs which prevent protein synthesis through translational suppression or mRNAs degradation, and regulate several physiological processes. METHODOLOGY/FINDINGS: Expression of mature miRNAs was studied by Q-PCR in inactive colonic mucosa of patients with UC (8), CD (8) and expressed relative to that observed in healthy controls (10). Only miRNAs with highly altered expression (>5 or <0.2 -fold relative to control) were considered when Q-PCR data were analyzed. Two subsets of 14 (UC) and 23 (CD) miRNAs with highly altered expression (5.2->100 -fold and 0.05-0.19 -fold for over- and under- expression, respectively; 0.001

Assuntos
Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , MicroRNAs/genética , Mapeamento Cromossômico , Feminino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Reação em Cadeia da Polimerase
11.
Mol Cell Biol ; 30(11): 2636-50, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20351171

RESUMO

The homeostatic self-renewal of the colonic epithelium requires coordinated regulation of the canonical Wnt/beta-catenin and Notch signaling pathways to control proliferation and lineage commitment of multipotent stem cells. However, the molecular mechanisms by which the Wnt/beta-catenin and Notch1 pathways interplay in controlling cell proliferation and fate in the colon are poorly understood. Here we show that NADPH oxidase 1 (NOX1), a reactive oxygen species (ROS)-producing oxidase that is highly expressed in colonic epithelial cells, is a pivotal determinant of cell proliferation and fate that integrates Wnt/beta-catenin and Notch1 signals. NOX1-deficient mice reveal a massive conversion of progenitor cells into postmitotic goblet cells at the cost of colonocytes due to the concerted repression of phosphatidylinositol 3-kinase (PI3K)/AKT/Wnt/beta-catenin and Notch1 signaling. This conversion correlates with the following: (i) the redox-dependent activation of the dual phosphatase PTEN, causing the inactivation of the Wnt pathway effector beta-catenin, and (ii) the downregulation of Notch1 signaling that provokes derepression of mouse atonal homolog 1 (Math1) expression. We conclude that NOX1 controls the balance between goblet and absorptive cell types in the colon by coordinately modulating PI3K/AKT/Wnt/beta-catenin and Notch1 signaling. This finding provides the molecular basis for the role of NOX1 in cell proliferation and postmitotic differentiation.


Assuntos
Proliferação de Células , Colo/citologia , Células-Tronco Multipotentes/fisiologia , NADH NADPH Oxirredutases/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Células CACO-2 , Caderinas/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Colo/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Humanos , Mucosa Intestinal/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/citologia , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor Notch1/genética , Proteínas Wnt/genética , beta Catenina/metabolismo
12.
J Biol Chem ; 284(18): 12541-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19265198

RESUMO

Ischemia/reperfusion injury (IRI) induces an innate immune response, leading to an inflammatory reaction and tissue damage that have been attributed to engagement of the Toll-like receptor (TLR) 2 and 4. However, the respective roles of TLR2 and/or TLR4 in mediating downstream activation of mitogen-activated protein kinase (MAPK) pathways during IRI have not been fully elucidated. Here we show that extracellular signal-regulated kinase (ERK)1/2 is activated in both intact kidneys and cultured renal tubule epithelial cells (RTECs) from wildtype and Tlr4 knockout mice, but not those from Tlr2 knockout mice subjected to transient ischemia. Geldanamycin (GA), an inhibitor of heat shock protein 90 and reticulum endoplasmic-resident gp96, and gp96 mRNA silencing (siRNA), did not affect ERK1/2 activation in either post-hypoxic wild-type or Tlr4-deficient RTECs, but did restore its activation in post-hypoxic Tlr2-deficient RTECs. Immunoprecipitation studies revealed that gp96 co-immunoprecipitates with the serine-threonine protein phosphatase 5 (PP5), identified as a negative modulator of the mitogen extracellular kinase (MEK)-ERK pathway, in unstressed wild-type and post-hypoxic Tlr2-deficient RTECs. In contrast, PP5 co-immunoprecipitation with gp96 was strikingly reduced in post-hypoxic wild-type RTECs, suggesting that the inactivation of PP5 resulting from the dissociation of PP5 from gp96 allows the activation of ERK1/2 to occur. Inhibition of PP5 by okadaic acid, and Pp5 siRNA also restored TLR2-mediated phosphorylation of ERK1/2, and apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK)-mediated apoptosis in post-hypoxic Tlr2-deficient RTECs. These findings indicate that gp96 interacts with PP5 and controls TLR2-mediated induction of ERK1/2 in post-hypoxic renal tubule cells.


Assuntos
Células Epiteliais/metabolismo , Nefropatias/metabolismo , Túbulos Renais/metabolismo , Sistema de Sinalização das MAP Quinases , Glicoproteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Traumatismo por Reperfusão/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/farmacologia , Nefropatias/genética , Lactamas Macrocíclicas/farmacologia , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteínas Nucleares/genética , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/genética , Traumatismo por Reperfusão/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
13.
J Hepatol ; 46(6): 1075-88, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17399843

RESUMO

BACKGROUND/AIMS: Endoplasmic reticulum (ER)-related unfolded protein response (UPR) is mediated by PKR-like ER kinase (PERK), ATF6 and IRE1. PERK phosphorylates eukaryotic translation initiation factor-2alpha (eIF2alpha) to attenuate protein synthesis, including in NF-kappaB-dependent antiapoptotic proteins. We hypothesized that an altered UPR in the liver may sensitize cirrhotic livers to LPS-induced, TNFalpha-mediated apoptosis. Thus, we examined in vivo UPR and NF-kappaB activity in livers from cirrhotic and normal LPS-challenged rats. METHODS: Livers were harvested in rats that did or did not receive LPS. RESULTS: Under baseline conditions, no UPR was found in normal livers while PERK/eIF2alpha and ATF6 pathways were activated in cirrhotic livers. After LPS, in normal livers, the PERK/eIF2alpha pathway was transiently activated. ATF6 and IRE1 were activated. In cirrhotic livers, the PERK/eIF2alpha pathway remained elevated. ATF6 and IRE1 pathways were altered. LPS-induced, NF-kappaB-dependent antiapoptotic proteins increased in normal livers whereas their expression was blunted at the posttranscriptional level in cirrhotic livers. CONCLUSIONS: Cirrhotic livers exhibit partial UPR activation in the basal state and full UPR, although altered, after LPS challenge. Sustained eIF2alpha phosphorylation, a hallmark of cirrhotic liver UPR, is associated with a lack of LPS-induced accumulation of NF-kappaB-dependent antiapoptotic proteins which may sensitize cirrhotic livers to LPS/TNFalpha-mediated apoptosis.


Assuntos
Apoptose , Fibrose/patologia , Lipopolissacarídeos/metabolismo , Fígado/patologia , Animais , Caspase 3/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fígado/metabolismo , Masculino , Desnaturação Proteica , Dobramento de Proteína , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
14.
Med Sci (Paris) ; 22(11): 953-9, 2006 Nov.
Artigo em Francês | MEDLINE | ID: mdl-17101097

RESUMO

Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.


Assuntos
NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio , Animais , Sobrevivência Celular , Senescência Celular , Feminino , Humanos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , Fagocitose , Filogenia
15.
Carcinogenesis ; 27(9): 1812-27, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16524888

RESUMO

The search for effective chemopreventive compounds is a major challenge facing research into preventing the progression of cancer cells. The naturally occurring polyphenol antioxidants look very promising, but their mechanism of action still remains poorly understood. Here, we show that 2-(3,4-dihydroxyphenyl)ethanol (DPE), a phenol antioxidant derived from olive oil, induces growth arrest and apoptosis in human colon carcinoma HT-29 cells. The mechanisms involve prolonged stress of the endoplasmic reticulum (ER) leading to the activation of the two main branches of the unfolded protein response (UPR), including the Ire1/XBP-1/GRP78/Bip and PERK/eIF2alpha arms. DPE treatment led to overexpression of the pro-apoptotic factor CHOP/GADD153 and persistent activation of the Jun-NH2-terminal kinase/activator protein-1 signaling pathway. DPE concomitantly modulated the extracellular signal-regulated kinase 1/2 and Akt/PKB pro-survival factors by altering their phosphorylation status as well as inhibiting tumor necrosis factor-alpha-induced nuclear factor-kappaB activation by inactivating the phosphorylation of nuclear factor inhibitor-kappaB kinase. These findings prompted us to investigate the possible involvement of phosphatases in DPE-mediated action. Using phosphatase inhibitors and RNA interference to silence the Ser/Thr phosphatase 2A (PP2A) prevented DPE-induced cell death. These findings demonstrate that DPE specifically activates PP2A, which plays a key initiating role in various pathways that lead to apoptosis in colon cancer cells.


Assuntos
Apoptose , Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Álcool Feniletílico/análogos & derivados , Fosfoproteínas Fosfatases/metabolismo , Caspase 3 , Caspases/metabolismo , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Álcool Feniletílico/farmacologia , Proteína Fosfatase 2 , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
16.
J Biol Chem ; 280(44): 37021-32, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16115878

RESUMO

The superoxide-producing phagocyte NADPH oxidase consists of a membrane-bound flavocytochrome b(558), the cytosol factors p47(phox), p67(phox), p40(phox), and the small GTPase Rac2, which translocate to the membrane to assemble the active complex following neutrophil activation. Interleukin-8 (IL-8) does not activate NADPH oxidase, but potentiates the oxidative burst induced by stimuli such as formyl-methionyl-leucyl-phenylalanine (fMLP) via a priming mechanism. The effect of IL-8 on the components of NADPH oxidase during the priming process has never been investigated in human neutrophils. Here we showed that within 3 min, IL-8 treatment enhanced the Btk- and ERK1/2-dependent phosphorylation of p47(phox), as well as the recruitment of flavocytochrome b(558), p47(phox), and Rac2 into cholesterol-enriched detergent-resistant microdomains (or lipid rafts). Conversely, IL-8 treatment lasting 15 min failed to recruit flavocytochrome b(558), p47(phox), or Rac2, but did enhance the Btk- and p38 MAPK-dependent phosphorylation and the translocation of p67(phox) into detergent-resistant microdomains. Moreover, methyl-beta-cyclodextrin, which disrupts lipid rafts, inhibited IL-8-induced priming in response to fMLP. Our findings indicate that IL-8-induced priming of the oxidative burst in response to fMLP involves a sequential assembly of the NADPH oxidase components in the lipid rafts of neutrophils.


Assuntos
Interleucina-8/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Explosão Respiratória , Superóxidos/metabolismo , Tirosina Quinase da Agamaglobulinemia , Grupo dos Citocromos b/metabolismo , Humanos , Lipídeos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Fosfoproteínas/metabolismo , Fosforilação , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , beta-Ciclodextrinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteína RAC2 de Ligação ao GTP
17.
Biochem Biophys Res Commun ; 335(4): 1149-54, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16122706

RESUMO

Ginkgolide B (GKB) is a bioactive component of the standardized extract from the leaves of the Ginkgo biloba tree (EGb 761), which is used in Chinese and in occidental medicine. GKB is known as a platelet-activating factor receptor antagonist. Here, we provide evidence that GKB per se (0.25-5 microM) stimulated tyrosine phosphorylation of proteins, phospholipase D activation, calcium transients, and activation of p38 but not p44/42 Map kinases in human polymorphonuclear leukocytes (PMN). These stimulatory effects remained relatively weak and primed PMN for subsequent stimulation of respiratory burst (RB) or directed locomotion by the chemoattractant fMet-Leu-Phe (fMLP) or complement-derived factor C5a. A similar RB priming was observed with rat exudate PMN after in vivo administration of EGb 761 (25 and 50 mg/kg) to rats before pleurisy induction. Thus, GKB primarily induces activation of intracellular signaling events and has the potential to prime cellular functions such as PMN defense activities.


Assuntos
Diterpenos/administração & dosagem , Imunidade Inata/imunologia , Lactonas/administração & dosagem , Ativação de Neutrófilo/efeitos dos fármacos , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Pleurisia/imunologia , Pleurisia/prevenção & controle , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Ginkgolídeos , Humanos , Imunidade Inata/efeitos dos fármacos , Masculino , Neutrófilos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
18.
J Immunol ; 174(6): 3633-42, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15749901

RESUMO

Using flow cytometry, we investigated the effect of TLR agonists on human polymorphonuclear neutrophil (PMN) apoptosis in whole blood. LPS (TLR4), peptidoglycan (TLR2), R-848 (TLR7/8), and CpG-DNA (TLR9) were equally effective at delaying spontaneous apoptosis of PMN, while PamCSK4 (TLR1/2), macrophage-activating lipopeptide-2 (TLR2/6), flagellin (TLR5), and loxoribine (TLR7) were less effective or inactive. TLR agonists found to delay apoptosis also extended the functional life span of PMN. Analysis of signaling pathways revealed that the antiapoptotic effect of TLR agonists required NF-kappaB and PI3K activation. Furthermore, analysis of intact cells by flow cytometry showed that TLR agonists delaying PMN apoptosis increased phosphorylation of Akt, a major target of PI3K. This effect was associated with a PI3K-dependent increase in heat shock protein 27 phosphorylation, which has been reported to play a key role in PMN survival. Finally, the TLR-induced delay in PMN apoptosis was associated with increased levels of Mcl-1 and A1, which are antiapoptotic members of the Bcl-2 family. These effects were reversed by PI3K and NF-kappaB inhibitors, respectively. TLR activation also led to PI3K-dependent phosphorylation of the proapoptotic protein Bad. Taken together, our results strongly suggest a role of NF-kappaB and PI3K in TLR-induced PMN survival, leading to modulation of Bcl-2 family molecules.


Assuntos
Glicoproteínas de Membrana/agonistas , Neutrófilos/citologia , Neutrófilos/fisiologia , Receptores de Superfície Celular/agonistas , Apoptose/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Caspase 3 , Caspases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Técnicas In Vitro , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína de Replicação C , Transdução de Sinais , Receptor 1 Toll-Like , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptor 5 Toll-Like , Receptor 7 Toll-Like , Receptor Toll-Like 9 , Receptores Toll-Like , Proteína de Morte Celular Associada a bcl
19.
Clin Diagn Lab Immunol ; 12(3): 436-46, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15753257

RESUMO

Using flow cytometry, we observed that interleukin-18 (IL-18) primed human neutrophils (PMNs) in whole blood to produce superoxide anion (O2 degrees-) in response to N-formyl peptide (fMLP) stimulation, whereas IL-18 alone had no significant effect. In contrast to tumor necrosis factor alpha (TNF-alpha), which is a cytokine known to strongly prime O2 degrees- production, IL-18 did not induce either p47phox phosphorylation or its translocation from the cytosol to the plasma membrane. However, IL-18 increased PMN degranulation, as shown by increased levels of cytochrome b558 and CD11b expression at the PMN surface. Moreover, addition of IL-18 to whole blood for 45 min reduced the ability of PMNs to bind to fMLP, suggesting endocytosis of fMLP receptors, as visualized by confocal microscopy. 2,3-Butanedione 2-monoxime, which inhibits endosomal recycling of plasma membrane components back to the cell surface, concomitantly accentuated the diminution of fMLP binding at the PMN surface and increased IL-18 priming of O2 degrees- production by PMNs in response to fMLP. This suggests that fMLP receptor endocytosis could account, at least in part, for the priming of O2 degrees- production. In addition, genistein, a tyrosine kinase inhibitor, and SB203580, a p38 mitogen-activated protein kinase (p38MAPK) inhibitor, completely reversed the decreased level of fMLP binding and increased the level of CD11b expression after IL-18 treatment. Flow cytometric analysis of intact PMNs in whole blood showed that IL-18 increased p38MAPK phosphorylation and tyrosine phosphorylation. In particular, IL-18 induced phosphorylation of focal adhesion kinase (p125FAK), which has been implicated in cytoskeleton reorganization. Taken together, our findings suggest several mechanisms that are likely to regulate cytokine-induced priming of the oxidative burst in PMNs in their blood environment.


Assuntos
Interleucina-18/farmacologia , Neutrófilos/metabolismo , Receptores de Formil Peptídeo/fisiologia , Explosão Respiratória/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Células Cultivadas , Grupo dos Citocromos b/metabolismo , Endocitose/efeitos dos fármacos , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Mol Cell Biol ; 24(24): 10703-17, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15572675

RESUMO

The mechanisms involved in the cytotoxic action of oxysterols in the pathogenesis of atherosclerosis still remain poorly understood. Among the major oxysterols present in oxidized low-density lipoprotein, we show here that 7-ketocholesterol (7-Kchol) induces oxidative stress and/or apoptotic events in human aortic smooth muscle cells (SMCs). This specific effect of 7-Kchol is mediated by a robust upregulation (threefold from the basal level) of Nox-4, a reactive oxygen species (ROS)-generating NAD(P)H oxidase homologue. This effect was highlighted by silencing Nox-4 expression with a specific small interfering RNA, which significantly reduced the 7-Kchol-induced production of ROS and abolished apoptotic events. Furthermore, the 7-Kchol activating pathway included an early triggering of endoplasmic reticulum stress, as assessed by transient intracellular Ca(2+) oscillations, and the induction of the expression of the cell death effector CHOP and of GRP78/Bip chaperone via the activation of IRE-1, all hallmarks of the unfolded protein response (UPR). We also showed that 7-Kchol activated the IRE-1/Jun-NH(2)-terminal kinase (JNK)/AP-1 signaling pathway to promote Nox-4 expression. Silencing of IRE-1 and JNK inhibition downregulated Nox-4 expression and subsequently prevented the UPR-dependent cell death induced by 7-Kchol. These findings demonstrate that Nox-4 plays a key role in 7-Kchol-induced SMC death, which is consistent with the hypothesis that Nox-4/oxysterols are involved in the pathogenesis of atherosclerosis.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/fisiologia , Regulação Enzimológica da Expressão Gênica , Cetocolesteróis/farmacologia , Músculo Liso/efeitos dos fármacos , NADPH Oxidases/metabolismo , Aorta/citologia , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cálcio/análise , Cálcio/metabolismo , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Endotélio Vascular/citologia , Técnica Indireta de Fluorescência para Anticorpo , Genes Reporter , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cetocolesteróis/metabolismo , Cinética , Luciferases/metabolismo , Microscopia de Fluorescência , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , NADPH Oxidase 4 , Estresse Oxidativo , Desnaturação Proteica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA