Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Front Oncol ; 14: 1386190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706610

RESUMO

Background: LMB-100 is a mesothelin (MSLN)-targeting recombinant immunotoxin (iTox) carrying a Pseudomonas exotoxin A payload that has shown promise against solid tumors, however, efficacy is limited by the development of neutralizing anti-drug antibodies (ADAs). Tofacitinib is an oral Janus Kinase (JAK) inhibitor that prevented ADA formation against iTox in preclinical studies. Methods: A phase 1 trial testing LMB-100 and tofacitinib in patients with MSLN-expressing cancers (pancreatic adenocarcinoma, n=13; cholangiocarcinoma, n=1; appendiceal carcinoma, n=1; cystadenocarcinoma, n=1) was performed to assess safety and to determine if tofacitinib impacted ADA formation. Participants were treated for up to 3 cycles with LMB-100 as a 30-minute infusion on days 4, 6, and 8 at two dose levels (100 and 140 µg/kg) while oral tofacitinib was administered for the first 10 days of the cycle (10 mg BID). Peripheral blood was collected for analysis of ADA levels, serum cytokines and circulating immune subsets. Results: The study was closed early due to occurrence of drug-induced pericarditis in 2 patients. Pericarditis with the combination was not reproducible in a transgenic murine model containing human MSLN. Two of 4 patients receiving all 3 cycles of treatment maintained effective LMB-100 levels, an unusual occurrence. Sustained increases in systemic IL-10 and TNF-α were seen, a phenomenon not observed in prior LMB-100 studies. A decrease in activated T cell subsets and an increase in circulating immunosuppressive myeloid populations occurred. No radiologic decreases in tumor volume were observed. Discussion: Further testing of tofacitinib to prevent ADA formation is recommended in applicable non-malignant disease settings. Clinical trial registration: https://www.clinicaltrials.gov/study/NCT04034238.

2.
Neuro Oncol ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38363979

RESUMO

BACKGROUND: The aim of this study is an improved understanding of drug distribution in brain metastases. Rather than single point snapshots, we analyzed the time course and route of drug/probe elimination (clearance), focusing on the Intramural Periarterial Drainage (IPAD) pathway. METHODS: Mice with JIMT1-BR HER2+ experimental brain metastases were injected with biocytin-TMR and either trastuzumab or human IgG. Drugs/probes circulated for 5 min-48h, followed by perfusion. Brain sections were stained for human IgG, vascular basement membrane proteins laminin or collagen IV, and periarterial α-SMA. A machine learning algorithm was developed to identify metastases, metastatic microenvironment, and uninvolved brain in confocally scanned brain sections. Drug/probe intensity over time and total imaged drug exposure (iAUC) were calculated for 27,249 lesions and co-immunofluorescence with IPAD- vascular matrix analyzed in 11,668 metastases. RESULTS: In metastases, peak trastuzumab levels were 5-fold higher than human IgG but 4-fold less than biocytin-TMR. The elimination phase constituted 85-93% of total iAUC for all drugs/probes tested. For trastuzumab, total iAUC during uptake was similar to the small molecule drug probe biocytin-TMR, but slower trastuzumab elimination resulted in a 1.7-fold higher total iAUC. During elimination trastuzumab and IgG were preferentially enriched in the α-SMA+ periarterial vascular matrix, consistent with the IPAD clearance route; biocytin-TMR showed heterogeneous elimination pathways. CONCLUSIONS: Drug/probe elimination is an important component of drug development for brain metastases. We identified a prolonged elimination pathway for systemically administered antibodies through the periarterial vascular matrix that may contribute to the sustained presence and efficacy of large antibody therapeutics.

3.
J Clin Endocrinol Metab ; 109(5): 1361-1370, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37967247

RESUMO

OBJECTIVE: Elevated rates of gluconeogenesis are an early pathogenic feature of youth-onset type 2 diabetes (Y-T2D), but targeted first-line therapies are suboptimal, especially in African American (AA) youth. We evaluated glucose-lowering mechanisms of metformin and liraglutide by measuring rates of gluconeogenesis and ß-cell function after therapy in AA Y-T2D. METHODS: In this parallel randomized clinical trial, 22 youth with Y-T2D-age 15.3 ± 2.1 years (mean ± SD), 68% female, body mass index (BMI) 40.1 ± 7.9 kg/m2, duration of diagnosis 1.8 ± 1.3 years-were randomized to metformin alone (Met) or metformin + liraglutide (Lira) (Met + Lira) and evaluated before and after 12 weeks. Stable isotope tracers were used to measure gluconeogenesis [2H2O] and glucose production [6,6-2H2]glucose after an overnight fast and during a continuous meal. ß-cell function (sigma) and whole-body insulin sensitivity (mSI) were assessed during a frequently sampled 2-hour oral glucose tolerance test. RESULTS: At baseline, gluconeogenesis, glucose production, and fasting and 2-hour glucose were comparable in both groups, though Met + Lira had higher hemoglobin A1C. Met + Lira had a greater decrease from baseline in fasting glucose (-2.0 ± 1.3 vs -0.6 ± 0.9 mmol/L, P = .008) and a greater increase in sigma (0.72 ± 0.68 vs -0.05 ± 0.71, P = .03). The change in fractional gluconeogenesis was similar between groups (Met + Lira: -0.36 ± 9.4 vs Met: 0.04 ± 12.3%, P = .9), and there were no changes in prandial gluconeogenesis or mSI. Increased glucose clearance in both groups was related to sigma (r = 0.63, P = .003) but not gluconeogenesis or mSI. CONCLUSION: Among Y-T2D, metformin with or without liraglutide improved glycemia but did not suppress high rates of gluconeogenesis. Novel therapies that will enhance ß-cell function and target the elevated rates of gluconeogenesis in Y-T2D are needed.

4.
Semin Oncol ; 51(1-2): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37880048

RESUMO

PARP inhibitors have emerged as a promising class of anticancer agents approved for the treatment of ovarian, breast, prostate, and pancreatic cancer. These inhibitors target PARP enzymes involved in DNA repair pathways and exhibit remarkable efficacy in cancers with genetic deficiencies in the homologous recombination pathway responsible for mending DNA double-strand breaks. While all PARP inhibitors demonstrate potent and selective inhibition of PARP1 and PARP2, the key enzymes involved in DNA repair, each agent within the class possesses unique pharmacological profiles distinguishing them from one another. This review aims to comprehensively examine the properties of the entire PARP inhibitor class while emphasizing individual pharmacologic and pharmacokinetic distinctions that inform clinical recommendations. Currently, four agents, namely olaparib, rucaparib, niraparib, and talazoparib, have obtained approval in the United States and Europe. Olaparib, the first approved PARP inhibitor, has been extensively studied and is indicated for a wider range of cancer types. Niraparib and talazoparib, the more recent additions to the PARP inhibitor class, possess the longest half-lives and are formulated for convenient once-daily dosing, alleviating the pill burden for patients when compared to older agents. Moreover, talazoparib undergoes minimal hepatic metabolism, reducing the potential for drug-drug interactions. Notably, niraparib is the sole PARP inhibitor recommended for dose reduction in hepatically impaired populations, whereas talazoparib and olaparib should be dose reduced in renally impaired populations. The mechanisms underlying these dose adjustment recommendations are further explored in this review. Additionally, this review briefly covers veliparib, a PARP inhibitor under development, and two recently approved PARP inhibitors in China, fuzuloparib and pamiparib. Although significant progress has been made in understanding PARP inhibitors, there are several unanswered questions that remain, necessitating further research across a broader spectrum of cancer types within this evolving class of anticancer agents.

5.
PLoS One ; 18(9): e0291068, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682953

RESUMO

Diffuse midline gliomas (DMG) are the most aggressive brain tumors of childhood and young adults, with documented 2-year survival rates <10%. Treatment failure is due in part to the function of the BBB. Intratumoral microdialysis sampling is an effective tool to determine brain entry of varied agents and could help to provide a better understanding of the relationship of drug permeability to DMG treatment responsivity. This is a non-randomized, single-center, phase 1 clinical trial. Up to seven young adult (18-39 years) patients with recurrent high-grade or diffuse midline glioma will be enrolled with the goal of 5 patients completing the trial over an anticipated 24 months. All patients will take abemaciclib pre-operatively for 4.5 days at twice daily dosing. Patients will undergo resection or biopsy, placement of a microdialysis catheter, and 48 hours of dialysate sampling coupled with timed plasma collections. If intratumoral tumor or brain dialysate sampling concentrations are >10nmol/L, or tumor tissue studies demonstrate CDK inhibition, then restart of abemaciclib therapy along with temozolomide will be administered for maintenance therapy and discontinued with evidence of radiologic or clinical disease progression. The poor survival associated with diffuse midline gliomas underscore the need for improved means to evaluate efficacy of drug delivery to tumor and peritumoral tissue. The findings of this novel study, will provide real-time measurements of BBB function which have the potential to influence future prognostic and diagnostic decisions in such a lethal disease with limited treatment options. Trial registration: Clinicaltrials.gov, NCT05413304. Registered June 10, 2022, Abemaciclib Neuropharmacokinetics of Diffuse Midline Glioma Using Intratumoral Microdialysis.


Assuntos
Soluções para Diálise , Glioma , Adulto Jovem , Humanos , Estudos de Viabilidade , Microdiálise , Protocolos Clínicos , Glioma/tratamento farmacológico
6.
Neuro Oncol ; 25(12): 2262-2272, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526549

RESUMO

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a lethal childhood cancer with median survival of less than 1 year. Panobinostat is an oral multihistone deacetylase inhibitor with preclinical activity in DIPG models. Study objectives were to determine safety, tolerability, maximum tolerated dose (MTD), toxicity profile, and pharmacokinetics of panobinostat in children with DIPG. PATIENTS AND METHODS: In stratum 1, panobinostat was administered 3 days per week for 3 weeks on, 1 week off to children with progressive DIPG, with dose escalation following a two-stage continual reassessment method. After this MTD was determined, the study was amended to evaluate the MTD in children with nonprogressive DIPG/Diffuse midline glioma (DMG) (stratum 2) on an alternate schedule, 3 days a week every other week in an effort to escalate the dose. RESULTS: For stratum 1, 19 subjects enrolled with 17/19 evaluable for dose-finding. The MTD was 10 mg/m2/dose. Dose-limiting toxicities included thrombocytopenia and neutropenia. Posterior reversible encephalopathy syndrome was reported in 1 patient. For stratum 2, 34 eligible subjects enrolled with 29/34 evaluable for dose finding. The MTD on this schedule was 22 mg/m2/dose. DLTs included thrombocytopenia, neutropenia, neutropenia with grade 4 thrombocytopenia, prolonged intolerable nausea, and increased ALT. CONCLUSIONS: The MTD of panobinostat is 10 mg/m2/dose administered 3 times per week for 3 weeks on/1 week off in children with progressive DIPG/DMG and 22 mg/m2/dose administered 3 times per week for 1 week on/1 week off when administered in a similar population preprogression. The most common toxicity for both schedules was myelosuppression.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Neutropenia , Síndrome da Leucoencefalopatia Posterior , Trombocitopenia , Criança , Humanos , Panobinostat/farmacocinética , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma/tratamento farmacológico , Glioma/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/patologia
7.
Cancers (Basel) ; 15(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627061

RESUMO

Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. Despite decades of clinical trials, the overall survival rate for patients with relapsed and metastatic disease remains below 30%, underscoring the need for novel treatments. FGFR4, a receptor tyrosine kinase that is overexpressed in RMS and mutationally activated in 10% of cases, is a promising target for treatment. Here, we show that futibatinib, an irreversible pan-FGFR inhibitor, inhibits the growth of RMS cell lines in vitro by inhibiting phosphorylation of FGFR4 and its downstream targets. Moreover, we provide evidence that the combination of futibatinib with currently used chemotherapies such as irinotecan and vincristine has a synergistic effect against RMS in vitro. However, in RMS xenograft models, futibatinib monotherapy and combination treatment have limited efficacy in delaying tumor growth and prolonging survival. Moreover, limited efficacy is only observed in a PAX3-FOXO1 fusion-negative (FN) RMS cell line with mutationally activated FGFR4, whereas little or no efficacy is observed in PAX3-FOXO1 fusion-positive (FP) RMS cell lines with FGFR4 overexpression. Alternative treatment modalities such as combining futibatinib with other kinase inhibitors or targeting FGFR4 with CAR T cells or antibody-drug conjugate may be more effective than the approaches tested in this study.

8.
Br J Cancer ; 129(9): 1389-1396, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37542109

RESUMO

Immune checkpoint inhibitors (ICIs) are approved for the treatment of a variety of cancer types. The doses of these drugs, though approved by the Food and Drug Administration (FDA), have never been optimised, likely leading to significantly higher doses than required for optimal efficacy. Dose optimisation would hypothetically decrease the risk, severity, and duration of immune-related adverse events, as well as provide an opportunity to reduce costs through interventional pharmacoeconomic strategies such as off-label dose reductions or less frequent dosing. We summarise existing evidence for ICI dose optimisation to advocate for the role of interventional pharmacoeconomics.


Assuntos
Farmacoeconomia , Inibidores de Checkpoint Imunológico , Estados Unidos , Humanos , Redução da Medicação , United States Food and Drug Administration
9.
Sci Transl Med ; 15(695): eabq6089, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163617

RESUMO

Alterations in the p38 mitogen-activated protein kinases (MAPKs) play an important role in the pathogenesis of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Activation of the p38α MAPK isoform and mislocalization of the p38γ MAPK isoform are associated with neuroinflammation and synaptic degeneration in DLB and PD. Therefore, we hypothesized that p38α might be associated with neuronal p38γ distribution and synaptic dysfunction in these diseases. To test this hypothesis, we treated in vitro cellular and in vivo mouse models of DLB/PD with SKF-86002, a compound that attenuates inflammation by inhibiting p38α/ß, and then investigated the effects of this compound on p38γ and neurodegenerative pathology. We found that inhibition of p38α reduced neuroinflammation and ameliorated synaptic, neurodegenerative, and motor behavioral deficits in transgenic mice overexpressing human α-synuclein. Moreover, treatment with SKF-86002 promoted the redistribution of p38γ to synapses and reduced the accumulation of α-synuclein in mice overexpressing human α-synuclein. Supporting the potential value of targeting p38 in DLB/PD, we found that SKF-86002 promoted the redistribution of p38γ in neurons differentiated from iPS cells derived from patients with familial PD (carrying the A53T α-synuclein mutation) and healthy controls. Treatment with SKF-86002 ameliorated α-synuclein-induced neurodegeneration in these neurons only when microglia were pretreated with this compound. However, direct treatment of neurons with SKF-86002 did not affect α-synuclein-induced neurotoxicity, suggesting that SKF-86002 treatment inhibits α-synuclein-induced neurotoxicity mediated by microglia. These findings provide a mechanistic connection between p38α and p38γ as well as a rationale for targeting this pathway in DLB/PD.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Doenças Neuroinflamatórias , Neurônios/metabolismo , Camundongos Transgênicos
10.
Artigo em Inglês | MEDLINE | ID: mdl-37196527

RESUMO

Metarrestin is a first-in-class small molecule inhibitor targeting the perinucleolar compartment, a subnuclear body associated with metastatic capacity. Promising preclinical results led to the clinical translation of the compound into a first-in-human phase I trial (NCT04222413). To characterize metarrestin's pharmacokinetic profile in humans, a uHPLC-MS/MS assay was developed and validated to determine the disposition of the drug in human plasma. Efficient sample preparation was accomplished through one-step protein precipitation paired with elution through a phospholipid filtration plate. Chromatographic separation was achieved with gradient elution through an Acuity UPLC® BEH C18 column (50 × 2.1 mm, 1.7 µm). Tandem mass spectrometry facilitated the detection of metarrestin and tolbutamide, the internal standard. The effective calibration range spanned 1-5000 ng/mL and was both accurate (range -5.9 % to 4.9 % deviation) and precise (≤9.0 %CV). Metarrestin proved stable (≤4.9 % degradation) under various assay-imposed conditions. Matrix effects, extraction efficiency, and process efficiency were assessed. Further, the assay was successfully able to determine the disposition of orally administered metarrestin in patients from the lowest dose cohort (1 mg) for 48 h post-administration. Thus, the validated analytical method detailed in this work is simple, sensitive, and clinically applicable.


Assuntos
Pirimidinas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Pirimidinas/farmacocinética , Pirróis/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
11.
Clin Cancer Res ; 29(18): 3603-3611, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37227187

RESUMO

PURPOSE: Despite promising preclinical studies, toxicities have precluded combinations of chemotherapy and DNA damage response (DDR) inhibitors. We hypothesized that tumor-targeted chemotherapy delivery might enable clinical translation of such combinations. PATIENTS AND METHODS: In a phase I trial, we combined sacituzumab govitecan, antibody-drug conjugate (ADC) that delivers topoisomerase-1 inhibitor SN-38 to tumors expressing Trop-2, with ataxia telangiectasia and Rad3-related (ATR) inhibitor berzosertib. Twelve patients were enrolled across three dose levels. RESULTS: Treatment was well tolerated, with improved safety over conventional chemotherapy-based combinations, allowing escalation to the highest dose. No dose-limiting toxicities or clinically relevant ≥grade 4 adverse events occurred. Tumor regressions were observed in 2 patients with neuroendocrine prostate cancer, and a patient with small cell lung cancer transformed from EGFR-mutant non-small cell lung cancer. CONCLUSIONS: ADC-based delivery of cytotoxic payloads represents a new paradigm to increase efficacy of DDR inhibitors. See related commentary by Berg and Choudhury, p. 3557.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Imunoconjugados , Neoplasias Pulmonares , Masculino , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Camptotecina/efeitos adversos , Camptotecina/administração & dosagem , Imunoconjugados/efeitos adversos , Imunoconjugados/administração & dosagem
12.
J Clin Oncol ; 41(18): 3374-3383, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37126770

RESUMO

PURPOSE: Children with low-grade glioma often require long-term therapy and suffer from treatment morbidity. Although targeted agents are promising, tumor targets often encompass normal developmental pathways and long-term effects of inhibition are unknown. Lenalidomide is an immunomodulatory agent with wide-ranging properties. Phase I studies indicated greater tolerability of lenalidomide in children compared with adults and a potential dose-response effect. PATIENTS AND METHODS: We performed a phase II trial of lenalidomide in children with pilocytic astrocytomas and optic pathway gliomas who failed initial therapy. Primary objectives included determination of objective response rate of children randomly assigned to regimen A, low-dose (20 mg/m2/dose), or regimen B, high-dose (115 mg/m2/dose) lenalidomide, and assessment for early progression. Secondary objectives included estimation of event-free survival, overall survival, incidence of toxic events, and assessment of plasma lenalidomide concentrations. Lenalidomide was administered once daily × 21 days of each 28-day cycle for each regimen. RESULTS: Seventy-four eligible patients were enrolled (n = 37, each arm). The predefined activity level of interest was achieved for both arms. Four objective responses were observed in each arm, and the number of early progressors was low. Eighteen patients completed 26 cycles of therapy (regimen A, n = 12; regimen B, n = 6). The median number of cycles was 14 (range, 2-26) for regimen A and 11 for regimen B (range, 1-26). Of 74 eligible patients who received study drug, 30 required dose reduction for toxicity (regimen A, n = 6; regimen B, n = 24) and 16 discontinued because of toxicity (regimen A, n = 2; regimen B, n = 14). CONCLUSION: Lenalidomide demonstrates a sufficient level of activity in children with low-grade glioma to warrant further exploration. Low-dose (20 mg/m2/dose administered once daily × 21 days of each 28-day cycle) lenalidomide appears to have better tolerability with comparable activity.


Assuntos
Antineoplásicos , Astrocitoma , Criança , Humanos , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Astrocitoma/tratamento farmacológico , Lenalidomida
14.
J Exp Clin Cancer Res ; 42(1): 76, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991390

RESUMO

BACKGROUND: NEO201 is a humanized IgG1 monoclonal antibody (mAb) generated against tumor-associated antigens from patients with colorectal cancer. NEO-201 binds to core 1 or extended core 1 O-glycans expressed by its target cells. Here, we present outcomes from a phase I trial of NEO-201 in patients with advanced solid tumors that have not responded to standard treatments. METHODS: This was a single site, open label 3 + 3 dose escalation clinical trial. NEO-201 was administered intravenously every two weeks in a 28-day cycle at dose level (DL) 1 (1 mg/kg), DL 1.5 (1.5 mg/kg) and DL 2 (2 mg/kg) until dose limiting toxicity (DLT), disease progression, or patient withdrawal. Disease evaluations were conducted after every 2 cycles. The primary objective was to assess the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of NEO-201. The secondary objective was to assess the antitumor activity by RECIST v1.1. The exploratory objectives assessed pharmacokinetics and the effect of NEO-201 administration on immunologic parameters and their impact on clinical response. RESULTS: Seventeen patients (11 colorectal, 4 pancreatic and 2 breast cancers) were enrolled; 2 patients withdrew after the first dose and were not evaluable for DLT. Twelve of the 15 patients evaluable for safety discontinued due to disease progression and 3 patients discontinued due to DLT (grade 4 febrile neutropenia [1 patient] and prolonged neutropenia [1 patient] at DL 2, and grade 3 prolonged (> 72 h) febrile neutropenia [1 patient] at DL 1.5). A total of 69 doses of NEO-201 were administered (range 1-15, median 4). Common (> 10%) grade 3/4 toxicities occurred as follows: neutropenia (26/69 doses, 17/17 patients), white blood cell decrease (16/69 doses, 12/17 patients), lymphocyte decrease (8/69 doses, 6/17 patients). Thirteen patients were evaluable for disease response; the best response was stable disease (SD) in 4 patients with colorectal cancer. Analysis of soluble factors in serum revealed that a high level of soluble MICA at baseline was correlated with a downregulation of NK cell activation markers and progressive disease. Unexpectedly, flow cytometry showed that NEO-201 also binds to circulating regulatory T cells and reduction of the quantities of these cells was observed especially in patients with SD. CONCLUSIONS: NEO-201 was safe and well tolerated at the MTD of 1.5 mg/kg, with neutropenia being the most common adverse event. Furthermore, a reduction in the percentage of regulatory T cells following NEO-201 treatment supports our ongoing phase II clinical trial evaluating the efficiency of the combination of NEO-201 with the immune checkpoint inhibitor pembrolizumab in adults with treatment-resistant solid tumors. TRIAL REGISTRATION: NCT03476681 . Registered 03/26/2018.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Neoplasias da Mama , Neoplasias Colorretais , Neoplasias Pancreáticas , Adulto , Feminino , Humanos , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Progressão da Doença , Neutropenia Febril/induzido quimicamente , Neoplasias Pancreáticas/tratamento farmacológico
15.
J Clin Pharmacol ; 63(6): 672-680, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36624662

RESUMO

Atezolizumab, a humanized monoclonal antibody against programmed cell death ligand 1 (PD-L1), was initially approved in 2016, around the same time that the sponsor published the minimum serum concentration to maintain the saturation of receptor occupancy (6 µg/mL). The initially approved dose regimen of 1200 mg every 3 weeks (q3w) was subsequently modified to 840 mg q2w or 1680 mg q4w through pharmacokinetic simulations. Yet, each standard regimen yields steady-state trough concentrations (CMIN,SS ) far exceeding (≈ 40-fold) the stated target concentration. Additionally, the steady-state area under the plasma drug concentration-time curve (AUCSS ) at 1200 mg q3w was significantly (P = .027) correlated with the probability of adverse events of special interest (AESIs) in patients with non-small cell lung cancer (NSCLC) and, coupled with excess exposure, this provides incentive to explore alternative dose regimens to lower the exposure burden while maintaining an effective CMIN,SS . In this study, we first identified 840 mg q6w as an extended-interval regimen that could robustly maintain a serum concentration of 6 µg/mL (≥99% of virtual patients simulated, n = 1000), then applied this regimen to an approach that administers 2 "loading doses" of standard-interval regimens for a future clinical trial aiming to personalize dose regimens. Each standard dose was simulated for 2 loading doses, then 840 mg q6w thereafter; all yielded cycle-7 CMIN,SS values of >6 µg/mL in >99% of virtual patients. Further, the AUCSS from 840 mg q6w resulted in a flattening (P = .63) of the exposure-response relationship with adverse events of special interest (AESIs). We next aim to verify this in a clinical trial seeking to validate extended-interval dosing in a personalized approach using therapeutic drug monitoring.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resultado do Tratamento , Neoplasias Pulmonares/tratamento farmacológico , Anticorpos Monoclonais Humanizados/farmacocinética , Simulação por Computador
16.
Clin Cancer Res ; 29(8): 1450-1459, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36705597

RESUMO

PURPOSE: Preclinical data showed that prophylactic, low-dose temozolomide (TMZ) significantly prevented breast cancer brain metastasis. We present results of a phase I trial combining T-DM1 with TMZ for the prevention of additional brain metastases after previous occurrence and local treatment in patients with HER2+ breast cancer. PATIENTS AND METHODS: Eligible patients had HER2+ breast cancer with brain metastases and were within 12 weeks of whole brain radiation therapy (WBRT), stereotactic radiosurgery, and/or surgery. Standard doses of T-DM1 were administered intravenously every 21 days (3.6 mg/kg) and TMZ was given orally daily in a 3+3 phase I dose escalation design at 30, 40, or 50 mg/m2, continuously. DLT period was one 21-day cycle. Primary endpoint was safety and recommended phase II dose. Symptom questionnaires, brain MRI, and systemic CT scans were performed every 6 weeks. Cell-free DNA sequencing was performed on patients' plasma and CSF. RESULTS: Twelve women enrolled, nine (75%) with prior SRS therapy and three (25%) with prior WBRT. Grade 3 or 4 AEs included thrombocytopenia (1/12), neutropenia (1/12), lymphopenia (6/12), and decreased CD4 (6/12), requiring pentamidine for Pneumocystis jirovecii pneumonia prophylaxis. No DLT was observed. Four patients on the highest TMZ dose underwent dose reductions. At trial entry, 6 of 12 patients had tumor mutations in CSF, indicating ongoing metastatic colonization despite a clear MRI. Median follow-up on study was 9.6 m (2.8-33.9); only 2 patients developed new parenchymal brain metastases. Tumor mutations varied with patient outcome. CONCLUSIONS: Metronomic TMZ in combination with standard dose T-DM1 shows low-grade toxicity and potential activity in secondary prevention of HER2+ brain metastases.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Temozolomida/uso terapêutico , Prevenção Secundária , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário
17.
Clin Cancer Res ; 29(2): 341-348, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36302175

RESUMO

PURPOSE: Succinate dehydrogenase (dSDH)-deficient tumors, including pheochromocytoma/paraganglioma, hereditary leiomyomatosis and renal cell cancer-associated renal cell carcinoma (HLRCC-RCC), and gastrointestinal stromal tumors (GIST) without KIT or platelet-derived growth factor receptor alpha mutations are often resistant to cytotoxic chemotherapy, radiotherapy, and many targeted therapies. We evaluated guadecitabine, a dinucleotide containing the DNA methyltransferase inhibitor decitabine, in these patient populations. PATIENTS AND METHODS: Phase II study of guadecitabine (subcutaneously, 45 mg/m2/day for 5 consecutive days, planned 28-day cycle) to assess clinical activity (according to RECISTv.1.1) across three strata of patients with dSDH GIST, pheochromocytoma/paraganglioma, or HLRCC-RCC. A Simon optimal two-stage design (target response rate 30% rule out 5%) was used. Biologic correlates (methylation and metabolites) from peripheral blood mononuclear cells (PBMC), serum, and urine were analyzed. RESULTS: Nine patients (7 with dSDH GIST, 1 each with paraganglioma and HLRCC-RCC, 6 females and 3 males, age range 18-57 years) were enrolled. Two patients developed treatment-limiting neutropenia. No partial or complete responses were observed (range 1-17 cycles of therapy). Biologic activity assessed as global demethylation in PBMCs was observed. No clear changes in metabolite concentrations were observed. CONCLUSIONS: Guadecitabine was tolerated in patients with dSDH tumors with manageable toxicity. Although 4 of 9 patients had prolonged stable disease, there were no objective responses. Thus, guadecitabine did not meet the target of 30% response rate across dSDH tumors at this dose, although signs of biologic activity were noted.


Assuntos
Neoplasias das Glândulas Suprarrenais , Produtos Biológicos , Carcinoma de Células Renais , Tumores do Estroma Gastrointestinal , Neoplasias Renais , Paraganglioma , Feocromocitoma , Masculino , Feminino , Adulto , Humanos , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Succinato Desidrogenase/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Tumores do Estroma Gastrointestinal/genética , Leucócitos Mononucleares/metabolismo , Paraganglioma/tratamento farmacológico , Paraganglioma/genética
18.
Clin Cancer Res ; 29(2): 472-487, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36322002

RESUMO

PURPOSE: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN: Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS: Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS: We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.


Assuntos
Rabdomiossarcoma , Humanos , Animais , Camundongos , Criança , Linhagem Celular Tumoral , Camundongos SCID , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno
20.
Cancer Med ; 12(4): 4236-4249, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36208017

RESUMO

LMB-100 is a novel immune-conjugate (immunotoxin) that targets mesothelin. A phase 1/2 clinical trial was conducted (NCT02810418) with primary objectives assessing the safety and efficacy of LMB-100 ± nab-paclitaxel. Participant blood samples were analyzed for changes in serum cytokines and circulating immune cell subsets associated with response or toxicity. On Arm A, participants (n = 20) received standard 30-minute LMB-100 infusion with nab-paclitaxel. Although clinical efficacy was observed, the combination caused intolerable capillary leak syndrome (CLS), a major toxicity of unclear etiology that affects many immunotoxin drugs. Participants developing CLS experienced rapid elevations in IFNγ and IL-8 compared to those without significant CLS, along with midcycle increases in Ki-67- CD4 T cells that were CD38, HLA-DR, or TIM3 positive. Additionally, a strong increase in activated CD4 and CD8 T cells and a concurrent decrease in Tregs were seen in the single Arm A patient achieving a partial response. In Arm B, administration of single agent LMB-100 to participants (n = 20) as a long infusion given over 24-48 h was investigated based on pre-clinical data that this format could reduce CLS. An optimal dose and schedule of long infusion LMB-100 were identified, but no clinical efficacy was observed even in patients receiving LMB-100 in combination with nab-paclitaxel. Despite this, both Arm A and B participants experienced increases in specific subsets of proliferating CD4 and CD8 T cells following Cycle 1 treatment. In summary, LMB-100 treatment causes systemic immune activation. Inflammatory and immune changes that accompany drug associated CLS were characterized for the first time.


Assuntos
Imunoconjugados , Imunotoxinas , Humanos , Imunotoxinas/uso terapêutico , Anticorpos Monoclonais , Paclitaxel/uso terapêutico , Albuminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA