Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648204

RESUMO

Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.


Assuntos
Dioscorea , Folhas de Planta , Simbiose , Dioscorea/microbiologia , Dioscorea/genética , Folhas de Planta/microbiologia
2.
Plant J ; 115(5): 1443-1457, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248633

RESUMO

Plant immune receptors, known as NOD-like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR-effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two-hybrid assay was conducted, followed by an in planta interaction test, using 32 conserved effectors from Ralstonia pseudosolanacearum type III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR-ID#85). Using a Förster resonance energy transfer-fluorescence lifetime imaging microscopy technique to detect protein-protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY-containing Arabidopsis RRS1-R NLR receptor, GmNLR-ID#85 could not be acetylated by PopP2 and failed to activate RPS4-dependent immunity when introduced into the RRS1-R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.


Assuntos
Proteínas NLR , Proteínas de Plantas , Plantas , Produtos Agrícolas , Técnicas do Sistema de Duplo-Híbrido , Núcleo Celular , Fatores de Transcrição , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Proteínas de Plantas/metabolismo , Biblioteca Gênica
3.
Environ Microbiol ; 23(10): 5962-5978, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33876545

RESUMO

The plant pathogen Ralstonia solanacearum uses plant resources to intensely proliferate in xylem vessels and provoke plant wilting. We combined automatic phenotyping and tissue/xylem quantitative metabolomics of infected tomato plants to decipher the dynamics of bacterial wilt. Daily acquisition of physiological parameters such as transpiration and growth were performed. Measurements allowed us to identify a tipping point in bacterial wilt dynamics. At this tipping point, the reached bacterial density brutally disrupts plant physiology and rapidly induces its death. We compared the metabolic and physiological signatures of the infection with drought stress, and found that similar changes occur. Quantitative dynamics of xylem content enabled us to identify glutamine (and asparagine) as primary resources R. solanacearum consumed during its colonization phase. An abundant production of putrescine was also observed during the infection process and was strongly correlated with in planta bacterial growth. Dynamic profiling of xylem metabolites confirmed that glutamine is the favoured substrate of R. solanacearum. On the other hand, a triple mutant strain unable to metabolize glucose, sucrose and fructose appears to be only weakly reduced for in planta growth and pathogenicity.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Virulência , Xilema/microbiologia
5.
Mol Plant Pathol ; 21(10): 1257-1270, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33245626

RESUMO

Pathogens deploy effector proteins that interact with host proteins to manipulate the host physiology to the pathogen's own benefit. However, effectors can also be recognized by host immune proteins, leading to the activation of defence responses. Effectors are thus essential components in determining the outcome of plant-pathogen interactions. Despite major efforts to decipher effector functions, our current knowledge on effector biology is scattered and often limited. In this study, we conducted two systematic large-scale yeast two-hybrid screenings to detect interactions between Arabidopsis thaliana proteins and effectors from two vascular bacterial pathogens: Ralstonia pseudosolanacearum and Xanthomonas campestris. We then constructed an interactomic network focused on Arabidopsis and effector proteins from a wide variety of bacterial, oomycete, fungal, and invertebrate pathogens. This network contains our experimental data and protein-protein interactions from 2,035 peer-reviewed publications (48,200 Arabidopsis-Arabidopsis and 1,300 Arabidopsis-effector protein interactions). Our results show that effectors from different species interact with both common and specific Arabidopsis interactors, suggesting dual roles as modulators of generic and adaptive host processes. Network analyses revealed that effector interactors, particularly "effector hubs" and bacterial core effector interactors, occupy important positions for network organization, as shown by their larger number of protein interactions and centrality. These interactomic data were incorporated in EffectorK, a new graph-oriented knowledge database that allows users to navigate the network, search for homology, or find possible paths between host and/or effector proteins. EffectorK is available at www.effectork.org and allows users to submit their own interactomic data.


Assuntos
Arabidopsis , Bases de Dados de Compostos Químicos , Resistência à Doença , Mapas de Interação de Proteínas , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Resistência à Doença/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Proteoma/metabolismo , Ralstonia/metabolismo , Software , Fatores de Virulência/metabolismo , Xanthomonas/metabolismo , Xanthomonas campestris/metabolismo
6.
Mol Plant Pathol ; 21(10): 1377-1388, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32770627

RESUMO

The type III secretion system with its delivered type III effectors (T3Es) is one of the main virulence determinants of Ralstonia solanacearum, a worldwide devastating plant pathogenic bacterium affecting many crop species. The pan-effectome of the R. solanacearum species complex has been exhaustively identified and is composed of more than 100 different T3Es. Among the reported strains, their content ranges from 45 to 76 T3Es. This considerably large and varied effectome could be considered one of the factors contributing to the wide host range of R. solanacearum. In order to understand how R. solanacearum uses its T3Es to subvert the host cellular processes, many functional studies have been conducted over the last three decades. It has been shown that R. solanacearum effectors, as those from other plant pathogens, can suppress plant defence mechanisms, modulate the host metabolism, or avoid bacterial recognition through a wide variety of molecular mechanisms. R. solanacearum T3Es can also be perceived by the plant and trigger immune responses. To date, the molecular mechanisms employed by R. solanacearum T3Es to modulate these host processes have been described for a growing number of T3Es, although they remain unknown for the majority of them. In this microreview, we summarize and discuss the current knowledge on the characterized R. solanacearum species complex T3Es.


Assuntos
Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Sistemas de Secreção Tipo III , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Doenças das Plantas/microbiologia , Imunidade Vegetal , Plantas/imunologia , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/metabolismo , Virulência , Fatores de Virulência/metabolismo
7.
PeerJ ; 7: e7346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579561

RESUMO

BACKGROUND: The bacterial plant pathogenic Ralstonia species belong to the beta-proteobacteria class and are soil-borne pathogens causing vascular bacterial wilt disease, affecting a wide range of plant hosts. These bacteria form a heterogeneous group considered as a "species complex" gathering three newly defined species. Like many other Gram negative plant pathogens, Ralstonia pathogenicity relies on a type III secretion system, enabling bacteria to secrete/inject a large repertoire of type III effectors into their plant host cells. Type III-secreted effectors (T3Es) are thought to participate in generating a favorable environment for the pathogen (countering plant immunity and modifying the host metabolism and physiology). METHODS: Expert genome annotation, followed by specific type III-dependent secretion, allowed us to improve our Hidden-Markov-Model and Blast profiles for the prediction of type III effectors. RESULTS: We curated the T3E repertoires of 12 plant pathogenic Ralstonia strains, representing a total of 12 strains spread over the different groups of the species complex. This generated a pangenome repertoire of 102 T3E genes and 16 hypothetical T3E genes. Using this database, we scanned for the presence of T3Es in the 155 available genomes representing 140 distinct plant pathogenic Ralstonia strains isolated from different host plants in different areas of the globe. All this information is presented in a searchable database. A presence/absence analysis, modulated by a strain sequence/gene annotation quality score, enabled us to redefine core and accessory T3E repertoires.

8.
Mol Plant Microbe Interact ; 32(8): 949-960, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30785360

RESUMO

Race 1 strains of Pseudomonas syringae pv. tomato, which cause bacterial speck disease of tomato, are becoming increasingly common and no simply inherited genetic resistance to such strains is known. We discovered that a locus in Solanum lycopersicoides, termed Pseudomonas tomato race 1 (Ptr1), confers resistance to race 1 P. syringae pv. tomato strains by detecting the activity of type III effector AvrRpt2. In Arabidopsis, AvrRpt2 degrades the RIN4 protein, thereby activating RPS2-mediated immunity. Using site-directed mutagenesis of AvrRpt2, we found that, like RPS2, activation of Ptr1 requires AvrRpt2 proteolytic activity. Ptr1 also detected the activity of AvrRpt2 homologs from diverse bacteria, including one in Ralstonia pseudosolanacearum. The genome sequence of S. lycopersicoides revealed no RPS2 homolog in the Ptr1 region. Ptr1 could play an important role in controlling bacterial speck disease and its future cloning may shed light on an example of convergent evolution for recognition of a widespread type III effector.


Assuntos
Resistência à Doença , Proteínas de Membrana Transportadoras , Pseudomonas syringae , Ralstonia , Solanum , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Genoma Bacteriano/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas syringae/classificação , Pseudomonas syringae/fisiologia , Ralstonia/classificação , Ralstonia/fisiologia , Solanum/genética , Solanum/microbiologia
9.
Plant Biotechnol J ; 17(3): 569-579, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30120864

RESUMO

Interfamily transfer of plant pattern recognition receptors (PRRs) represents a promising biotechnological approach to engineer broad-spectrum, and potentially durable, disease resistance in crops. It is however unclear whether new recognition specificities to given pathogen-associated molecular patterns (PAMPs) affect the interaction of the recipient plant with beneficial microbes. To test this in a direct reductionist approach, we transferred the Brassicaceae-specific PRR ELONGATION FACTOR-THERMO UNSTABLE RECEPTOR (EFR), conferring recognition of the bacterial EF-Tu protein, from Arabidopsis thaliana to the legume Medicago truncatula. Constitutive EFR expression led to EFR accumulation and activation of immune responses upon treatment with the EF-Tu-derived elf18 peptide in leaves and roots. The interaction of M. truncatula with the bacterial symbiont Sinorhizobium meliloti is characterized by the formation of root nodules that fix atmospheric nitrogen. Although nodule numbers were slightly reduced at an early stage of the infection in EFR-Medicago when compared to control lines, nodulation was similar in all lines at later stages. Furthermore, nodule colonization by rhizobia, and nitrogen fixation were not compromised by EFR expression. Importantly, the M. truncatula lines expressing EFR were substantially more resistant to the root bacterial pathogen Ralstonia solanacearum. Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on disease resistance against a bacterial pathogen. In addition, our results indicate that Rhizobium can either avoid PAMP recognition during the infection process, or is able to actively suppress immune signaling.


Assuntos
Proteínas de Arabidopsis/fisiologia , Medicago truncatula/genética , Raízes de Plantas/microbiologia , Receptores de Reconhecimento de Padrão/fisiologia , Sinorhizobium meliloti/metabolismo , Simbiose , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Doenças das Plantas/microbiologia , Nodulação/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Receptores de Reconhecimento de Padrão/genética , Simbiose/genética
10.
Mol Plant Pathol ; 19(11): 2459-2472, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30073750

RESUMO

To deploy durable plant resistance, we must understand its underlying molecular mechanisms. Type III effectors (T3Es) and their recognition play a central role in the interaction between bacterial pathogens and crops. We demonstrate that the Ralstonia solanacearum species complex (RSSC) T3E ripAX2 triggers specific resistance in eggplant AG91-25, which carries the major resistance locus EBWR9. The eggplant accession AG91-25 is resistant to the wild-type R. pseudosolanacearum strain GMI1000, whereas a ripAX2 defective mutant of this strain can cause wilt. Notably, the addition of ripAX2 from GMI1000 to PSS4 suppresses wilt development, demonstrating that RipAX2 is an elicitor of AG91-25 resistance. RipAX2 has been shown previously to induce effector-triggered immunity (ETI) in the wild relative eggplant Solanum torvum, and its putative zinc (Zn)-binding motif (HELIH) is critical for ETI. We show that, in our model, the HELIH motif is not necessary for ETI on AG91-25 eggplant. The ripAX2 gene was present in 68.1% of 91 screened RSSC strains, but in only 31.1% of a 74-genome collection comprising R. solanacearum and R. syzygii strains. Overall, it is preferentially associated with R. pseudosolanacearum phylotype I. RipAX2GMI1000 appears to be the dominant allele, prevalent in both R. pseudosolanacearum and R. solanacearum, suggesting that the deployment of AG91-25 resistance could control efficiently bacterial wilt in the Asian, African and American tropics. This study advances the understanding of the interaction between RipAX2 and the resistance genes at the EBWR9 locus, and paves the way for both functional genetics and evolutionary analyses.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Resistência à Doença , Ecótipo , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum melongena/imunologia , Solanum melongena/microbiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência Conservada , Teste de Complementação Genética , Filogenia , Imunidade Vegetal , Raízes de Plantas/microbiologia , Domínios Proteicos , Ralstonia solanacearum/crescimento & desenvolvimento , Ralstonia solanacearum/patogenicidade , Virulência , Dedos de Zinco
11.
Mol Plant Pathol ; 19(1): 129-142, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27768829

RESUMO

The subversion of plant cellular functions is essential for bacterial pathogens to proliferate in host plants and cause disease. Most bacterial plant pathogens employ a type III secretion system to inject type III effector (T3E) proteins inside plant cells, where they contribute to the pathogen-induced alteration of plant physiology. In this work, we found that the Ralstonia solanacearum T3E RipAY suppresses plant immune responses triggered by bacterial elicitors and by the phytohormone salicylic acid. Further biochemical analysis indicated that RipAY associates in planta with thioredoxins from Nicotiana benthamiana and Arabidopsis. Interestingly, RipAY displays γ-glutamyl cyclotransferase (GGCT) activity to degrade glutathione in plant cells, which is required for the reported suppression of immune responses. Given the importance of thioredoxins and glutathione as major redox regulators in eukaryotic cells, RipAY activity may constitute a novel and powerful virulence strategy employed by R. solanacearum to suppress immune responses and potentially alter general redox signalling in host cells.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Nicotiana/imunologia , Imunidade Vegetal , Ralstonia solanacearum/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Arabidopsis/microbiologia , Núcleo Celular/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Oxirredução , Células Vegetais/metabolismo , Ralstonia solanacearum/patogenicidade , Tiorredoxinas/metabolismo , Nicotiana/citologia , Nicotiana/microbiologia , Virulência , gama-Glutamilciclotransferase/metabolismo
12.
Methods Mol Biol ; 1734: 209-222, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29288457

RESUMO

Phytopathogenic bacteria have evolved multiple strategies to infect plants. Like many gram-negative bacteria, Ralstonia solanacearum, the causal agent of bacterial wilt, possesses a specialized protein secretion machinery to deliver effector proteins directly into the host cells. This type 3 secretion system (T3SS) and the bacterial proteins translocated, called type 3 effectors (T3Es), constitute the main pathogenicity determinants of the R. solanacearum species complex (RSSC). Up to 113 orthologous groups defining T3E genes have been identified among the RSSC strains sequenced to date. The increasing number of R. solanacearum genomic sequences available still expands the number of T3E candidates which require experimental validation. Here, we describe in vitro (type 3 secretion) and in vivo (type 3 translocation based on CyaA' reporter gene) methods to identify and validate type 3-dependent delivery of proteins of interest highlighted as candidate T3Es. We also present protocols to generate dedicated vectors and R. solanacearum transformation to perform these experiments.


Assuntos
Ralstonia solanacearum/fisiologia , Sistemas de Secreção Tipo III , Proteínas de Bactérias/genética , Vetores Genéticos/genética , Doenças das Plantas/microbiologia , Transformação Genética , Translocação Genética
13.
Methods Mol Biol ; 1734: 223-239, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29288458

RESUMO

In this chapter, we describe different methods for phenotyping strains or mutants of the bacterial wilt agent, Ralstonia solanacearum, on four different host plants: Arabidopsis thaliana, tomato (Solanum lycopersicum), tobacco (Nicotiana benthamiana), or Medicago truncatula. Methods for preparation of high volume or low volume inocula are first described. Then, we describe the procedures for inoculation of plants by soil drenching, stem injection or leaf infiltration, and scoring of the wilting symptoms development. Two methods for measurement of bacterial multiplication in planta are also proposed: (1) counting the bacterial colonies upon serial dilution plating and (2) determining the bacterial concentration using a qPCR approach. In this chapter, we also describe a competitive index assay to compare the fitness of two strains coinoculated in the same plant. Lastly, specific protocols describe in vitro and hydroponic inoculation procedures to follow disease development and bacterial multiplication in both the roots and aerial parts of the plant.


Assuntos
Fenótipo , Doenças das Plantas/microbiologia , Ralstonia solanacearum/fisiologia , Solanum lycopersicum/microbiologia , Medicago truncatula/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Nicotiana/microbiologia
14.
Plant Methods ; 13: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28465712

RESUMO

BACKGROUND: PTI and ETI are the two major defence mechanisms in plants. ETI is triggered by the detection of pathogen effectors, or their activity, in the plant cell and most of the time involves internal receptors known as resistance (R) genes. An increasing number of R genes responsible for recognition of specific effectors have been characterised over the years; however, methods to identify R genes are often challenging and cannot always be translated to crop plants. RESULTS: We present a novel method to identify R genes responsible for the recognition of specific effectors that trigger a hypersensitive response (HR) in Nicotiana benthamiana. This method is based on the genome-wide identification of most of the potential R genes of N. benthamiana and a systematic silencing of these potential R genes in a simple transient expression assay. A hairpin-RNAi library was constructed covering 345 R gene candidates of N. benthamiana. This library was then validated using several previously described R genes. Our approach indeed confirmed that Prf, NRC2a/b and NRC3 are required for the HR that is mediated in N. benthamiana by Pto/avrPto (prf, NRC2a/b and NRC3) and by Cf4/avr4 (NRC2a/b and NRC3). We also confirmed that NRG1, in association with N, is required for the Tobacco Mosaic Virus (TMV)-mediated HR in N. benthamiana. CONCLUSION: We present a novel approach combining bioinformatics, multiple-gene silencing and transient expression assay screening to rapidly identify one-to-one relationships between pathogen effectors and host R genes in N. benthamiana. This approach allowed the identification of previously described R genes responsible for detection of avirulence determinants from Pseudomonas, Cladosporium and TMV, demonstrating that the method could be applied to any effectors/proteins originating from a broad range of plant pathogens that trigger an HR in N. benthamiana. Moreover, with the increasing availability of genome sequences from model and crop plants and pathogens, this approach could be implemented in other plants, accelerating the process of identification and characterization of novel resistance genes.

15.
PLoS Pathog ; 12(12): e1006044, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27911943

RESUMO

Experimental evolution of the plant pathogen Ralstonia solanacearum, where bacteria were maintained on plant lineages for more than 300 generations, revealed that several independent single mutations in the efpR gene from populations propagated on beans were associated with fitness gain on bean. In the present work, novel allelic efpR variants were isolated from populations propagated on other plant species, thus suggesting that mutations in efpR were not solely associated to a fitness gain on bean, but also on additional hosts. A transcriptomic profiling and phenotypic characterization of the efpR deleted mutant showed that EfpR acts as a global catabolic repressor, directly or indirectly down-regulating the expression of multiple metabolic pathways. EfpR also controls virulence traits such as exopolysaccharide production, swimming and twitching motilities and deletion of efpR leads to reduced virulence on tomato plants after soil drenching inoculation. We studied the impact of the single mutations that occurred in efpR during experimental evolution and found that these allelic mutants displayed phenotypic characteristics similar to the deletion mutant, although not behaving as complete loss-of-function mutants. These adaptive mutations therefore strongly affected the function of efpR, leading to an expanded metabolic versatility that should benefit to the evolved clones. Altogether, these results indicated that EfpR is a novel central player of the R. solanacearum virulence regulatory network. Independent mutations therefore appeared during experimental evolution in the evolved clones, on a crucial node of this network, to favor adaptation to host vascular tissues through regulatory and metabolic rewiring.


Assuntos
Genes de Plantas/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade , Virulência/genética , Perfilação da Expressão Gênica , Mutação , Reação em Cadeia da Polimerase , Fatores de Virulência/metabolismo
16.
Mol Cell Proteomics ; 15(2): 598-613, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26637540

RESUMO

Ralstonia solanacearum, the causal agent of bacterial wilt, exerts its pathogenicity through more than a hundred secreted proteins, many of them depending directly on the functionality of a type 3 secretion system. To date, only few type 3 effectors have been identified as required for bacterial pathogenicity, notably because of redundancy among the large R. solanacearum effector repertoire. In order to identify groups of effectors collectively promoting disease on susceptible hosts, we investigated the role of putative post-translational regulators in the control of type 3 secretion. A shotgun secretome analysis with label-free quantification using tandem mass spectrometry was performed on the R. solanacearum GMI1000 strain. There were 228 proteins identified, among which a large proportion of type 3 effectors, called Rip (Ralstonia injected proteins). Thanks to this proteomic approach, RipBJ was identified as a new effector specifically secreted through type 3 secretion system and translocated into plant cells. A focused Rip secretome analysis using hpa (hypersensitive response and pathogenicity associated) mutants revealed a fine secretion regulation and specific subsets of Rips with different secretion patterns. We showed that a set of Rips (RipF1, RipW, RipX, RipAB, and RipAM) are secreted in an Hpa-independent manner. We hypothesize that these Rips could be preferentially involved in the first stages of type 3 secretion. In addition, the secretion of about thirty other Rips is controlled by HpaB and HpaG. HpaB, a candidate chaperone was shown to positively control secretion of numerous Rips, whereas HpaG was shown to act as a negative regulator of secretion. To evaluate the impact of altered type 3 effectors secretion on plant pathogenesis, the hpa mutants were assayed on several host plants. HpaB was required for bacterial pathogenicity on multiple hosts whereas HpaG was found to be specifically required for full R. solanacearum pathogenicity on the legume plant Medicago truncatula.


Assuntos
Proteínas de Bactérias/genética , Doenças das Plantas/microbiologia , Proteômica , Ralstonia solanacearum/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares/genética , Mutação , Doenças das Plantas/genética , Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidade
17.
Mol Plant Pathol ; 17(4): 553-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26300048

RESUMO

The soil-borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1-like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine-rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease-controlling T3E, and sheds light on the co-evolutionary arms race between the bacterium and its hosts.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Ralstonia solanacearum/metabolismo , Seleção Genética , Sequência de Aminoácidos , Teste de Complementação Genética , Medicago truncatula/microbiologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Filogenia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/crescimento & desenvolvimento , Ralstonia solanacearum/patogenicidade , Homologia de Sequência de Aminoácidos , Virulência
18.
Front Microbiol ; 6: 229, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852679

RESUMO

The plant pathogen Ralstonia solanacearum has two genes encoding for the sigma factor σ(54): rpoN1, located in the chromosome and rpoN2, located in a distinct "megaplasmid" replicon. In this study, individual mutants as well as a double mutant of rpoN were created in R. solanacearum strain GMI1000 in order to determine the extent of functional overlap between these two genes. By virulence assay we observed that rpoN1 is required for virulence whereas rpoN2 is not. In addition rpoN1 controls other important functions such twitching motility, natural transformation and growth on nitrate, unlike rpoN2. The rpoN1 and rpoN2 genes have different expression pattern, the expression of rpoN1 being constitutive whereas rpoN2 expression is induced in minimal medium and in the presence of plant cells. Moreover, the expression of rpoN2 is dependent upon rpoN1. Our work therefore reveals that the two rpoN genes are not functionally redundant in R. solanacearum. A list of potential σ(54) targets was identified in the R. solanacearum genome and suggests that multiple traits are under the control of these regulators. Based on these findings, we provide a model describing the functional connection between RpoN1 and the PehR pathogenicity regulator and their dual role in the control of several R. solanacearum virulence determinants.

19.
Genome Announc ; 2(3)2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24874667

RESUMO

Ralstonia solanacearum Indian strains Rs-09-161 and Rs-10-244 were isolated from the coastal region of Goa and from the Andaman Islands. We report the draft genome sequences of these representative isolates infecting solanaceous vegetables in India.

20.
Mol Plant Pathol ; 15(6): 601-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24405562

RESUMO

Many pathogenic bacteria have evolved a type III secretion system (T3SS) to successfully invade their host. This extracellular apparatus allows the translocation of proteins, called type III effectors (T3Es), directly into the host cells. T3Es are virulence factors that have been shown to interfere with the host's immunity or to provide nutrients from the host to the bacteria. The Gram-negative bacterium Ralstonia solanacearum is a worldwide major crop pest whose virulence strongly relies on the T3SS. In R. solanacearum, transcriptional regulation has been extensively studied. However, very few data are available concerning the role played by type III-associated regulators, such as type III chaperones and T3SS control proteins. Here, we characterized HpaP, a putative type III secretion substrate specificity switch (T3S4) protein of R. solanacearum which is not secreted by the bacterium or translocated in the plant cells. HpaP self-interacts and interacts with the PopP1 T3E. HpaP modulates the secretion of early (HrpY pilin) and late (AvrA and PopP1 T3Es) type III substrates. HpaP is dispensable for the translocation of T3Es into the host cells. Finally, we identified two regions of five amino acids in the T3S4 domain that are essential for efficient PopP1 secretion and for HpaP's role in virulence on tomato and Arabidopsis thaliana, but not required for HpaP-HpaP and HpaP-PopP1 interactions. Taken together, our results indicate that HpaP is a putative R. solanacearum T3S4 protein important for full pathogenicity on several hosts, acting as a helper for PopP1 secretion, and repressing AvrA and HrpY secretion.


Assuntos
Proteínas de Bactérias/fisiologia , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/patogenicidade , Sequência de Aminoácidos , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Mutação , Filogenia , Estrutura Terciária de Proteína , Ralstonia solanacearum/genética , Homologia de Sequência de Aminoácidos , Virulência/genética , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA