Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537148

RESUMO

Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.


Assuntos
Trifosfato de Adenosina , Domínio Catalítico , Fosforilação , Conformação Proteica
2.
J Mol Biol ; 435(23): 168309, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806554

RESUMO

Previous studies of the protein kinase, ERK2, using NMR and hydrogen-exchange measurements have shown changes in dynamics accompanying its activation by phosphorylation. However, knowledge about the conformational motions involved is incomplete. Here, we examined ERK2 using long conventional molecular dynamics (MD) simulations starting from crystal structures of phosphorylated (2P) and unphosphorylated (0P) forms. Individual trajectories were run for (5 to 25) µs, totaling 727 µs. The results show unexpected flexibility of the A-loop, with multiple long-lived (>5 µs) conformational states in both 2P- and 0P-ERK2. Differential contact network and principal component analyses reveal coupling between the A-loop fold and active site dynamics, with evidence for conformational selection in the kinase core of 2P-ERK2 but not 0P-ERK2. Simulations of 2P-ERK2 show A-loop states corresponding to restrained dynamics within the N-lobe, including regions around catalytic residues. One A-loop conformer forms lasting interactions with the L16 segment, leading to reduced RMSF and greater compaction in the active site. By contrast, simulations of 0P-ERK2 reveal excursions of A-loop residues away from the C-lobe, leading to greater active site mobility. Thus, the A-loop in ERK2 switches between distinct conformations that reflect coupling with the active site, possibly via the L16 segment. Crystal packing interactions suggest that lattice contacts with the A-loop may restrain its structural variation in X-ray structures of ERK2. The novel conformational states identified by MD expand our understanding of ERK2 regulation, by linking the activated state of the kinase to reduced dynamics and greater compaction surrounding the catalytic site.


Assuntos
Domínio AAA , Domínio Catalítico , Proteína Quinase 1 Ativada por Mitógeno , Simulação de Dinâmica Molecular , Fosforilação , Proteína Quinase 1 Ativada por Mitógeno/química , Ativação Enzimática , Cristalografia por Raios X
3.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37745518

RESUMO

Activation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

4.
bioRxiv ; 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37090603

RESUMO

Changes in the dynamics of the protein kinase, ERK2, have been shown to accompany its activation by dual phosphorylation. However, our knowledge about the conformational changes represented by these motions is incomplete. Previous NMR relaxation dispersion studies showed that active, dual-phosphorylated ERK2 undergoes global exchange between at least two energetically similar conformations. These findings, combined with measurements by hydrogen exchange mass spectrometry (HX-MS), suggested that the global conformational exchange involves motions of the activation loop (A-loop) that are coupled to regions surrounding the kinase active site. In order to better understand the contribution of dynamics to the activation of ERK2, we applied long conventional molecular dynamics (MD) simulations starting from crystal structures of active, phosphorylated (2P), and inactive, unphosphorylated (0P) ERK2. Individual trajectories were run for (5 to 25) µ s and totaled 727 µ s. The results showed that the A-loop is unexpectedly flexible in both 2P- and 0P-ERK2, and able to adopt multiple long-lived (>5 µ s) conformational states. Simulations starting from the X-ray structure of 2P-ERK2 (2ERK) revealed A-loop states corresponding to restrained dynamics within the N-lobe, including regions surrounding catalytic residues. One A-loop conformer forms lasting interactions with the C-terminal L16 segment and shows reduced RMSF and greater compaction in the active site. By contrast, simulations starting from the most common X-ray conformation of 0P-ERK2 (5UMO) reveal frequent excursions of A-loop residues away from a C-lobe docking site pocket and towards a new state that shows greater dynamics in the N-lobe and disorganization around the active site. Thus, the A-loop in ERK2 appears to switch between distinct conformational states that reflect allosteric coupling with the active site, likely occurring via the L16 segment. Analyses of crystal packing interactions across many structural datasets suggest that the A-loop observed in X-ray structures of ERK2 may be driven by lattice contacts and less representative of the solution structure. The novel conformational states identified by MD expand our understanding of ERK2 regulation, by linking the activated state of the kinase to reduced dynamics and greater compaction surrounding the catalytic site.

5.
Curr Opin Struct Biol ; 71: 215-222, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34425481

RESUMO

Structural changes involved in protein kinase activation and ligand binding have been determined from a wealth of X-ray crystallographic evidence. Recent solution studies using NMR, EPR, HX-MS, and fluorescence techniques have deepened this understanding by highlighting the underlying energetics and dynamics of multistate conformational ensembles. This new research is showing how activation mechanisms and ligand binding alter the internal motions of kinases and enable allosteric coupling between distal regulatory regions and the active site.


Assuntos
Proteínas Quinases , Domínio Catalítico , Cristalografia por Raios X
6.
Proc Natl Acad Sci U S A ; 116(31): 15463-15468, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311868

RESUMO

Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/química , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Espectrometria de Massas , Modelos Biológicos , Nucleotídeos/química , Nucleotídeos/metabolismo , Fosforilação/efeitos dos fármacos , Estrutura Secundária de Proteína
7.
Faraday Discuss ; 160: 9-44; discussion 103-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23795491

RESUMO

Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of


Assuntos
Biopolímeros/química , Ferro/química , Modelos Químicos , Sais/química
8.
Proc Natl Acad Sci U S A ; 108(41): 16932-7, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21930943

RESUMO

To explain the large, opposite effects of urea and glycine betaine (GB) on stability of folded proteins and protein complexes, we quantify and interpret preferential interactions of urea with 45 model compounds displaying protein functional groups and compare with a previous analysis of GB. This information is needed to use urea as a probe of coupled folding in protein processes and to tune molecular dynamics force fields. Preferential interactions between urea and model compounds relative to their interactions with water are determined by osmometry or solubility and dissected using a unique coarse-grained analysis to obtain interaction potentials quantifying the interaction of urea with each significant type of protein surface (aliphatic, aromatic hydrocarbon (C); polar and charged N and O). Microscopic local-bulk partition coefficients K(p) for the accumulation or exclusion of urea in the water of hydration of these surfaces relative to bulk water are obtained. K(p) values reveal that urea accumulates moderately at amide O and weakly at aliphatic C, whereas GB is excluded from both. These results provide both thermodynamic and molecular explanations for the opposite effects of urea and glycine betaine on protein stability, as well as deductions about strengths of amide NH--amide O and amide NH--amide N hydrogen bonds relative to hydrogen bonds to water. Interestingly, urea, like GB, is moderately accumulated at aromatic C surface. Urea m-values for protein folding and other protein processes are quantitatively interpreted and predicted using these urea interaction potentials or K(p) values.


Assuntos
Betaína/farmacologia , Desnaturação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Ureia/farmacologia , Sítios de Ligação , Ligação de Hidrogênio , Modelos Químicos , Simulação de Dinâmica Molecular , Dobramento de Proteína/efeitos dos fármacos , Proteínas/química , Proteínas/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 107(17): 7716-21, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20385834

RESUMO

The majority ( approximately 70%) of surface buried in protein folding is hydrocarbon, whereas in DNA helix formation, the majority ( approximately 65%) of surface buried is relatively polar nitrogen and oxygen. Our previous quantification of salt exclusion from hydrocarbon (C) accessible surface area (ASA) and accumulation at amide nitrogen (N) and oxygen (O) ASA leads to a prediction of very different Hofmeister effects on processes that bury mostly polar (N, O) surface compared to the range of effects commonly observed for processes that bury mainly nonpolar (C) surface, e.g., micelle formation and protein folding. Here we quantify the effects of salts on folding of the monomeric DNA binding domain (DBD) of lac repressor (lac DBD) and on formation of an oligomeric DNA duplex. In accord with this prediction, no salt investigated has a stabilizing Hofmeister effect on DNA helix formation. Our ASA-based analyses of model compound data and estimates of the surface area buried in protein folding and DNA helix formation allow us to predict Hofmeister effects on these processes. We observe semiquantitative to quantitative agreement between these predictions and the experimental values, obtained from a novel separation of coulombic and Hofmeister effects. Possible explanations of deviations, including salt-dependent unfolded ensembles and interactions with other types of surface, are discussed.


Assuntos
DNA/química , Conformação de Ácido Nucleico/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Sais/química , Sais/farmacologia , Dicroísmo Circular , Hidrocarbonetos/química , Repressores Lac/metabolismo , Modelos Químicos , Nitrogênio/química , Oxigênio/química , Termodinâmica
10.
Biochemistry ; 49(9): 1954-62, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20121154

RESUMO

To improve our understanding of the effects of small solutes on protein stability, we conducted atomistic simulations to quantitatively characterize the interactions between two broadly used small solutes, urea and glycine betaine (GB), and a triglycine peptide, which is a good model for a protein backbone. Multiple solute concentrations were analyzed, and each solute-peptide-water ternary system was studied with approximately 200-300 ns of molecular dynamics simulations with the CHARMM force field. The comparison between calculated preferential interaction coefficients (Gamma(23)) and experimentally measured values suggests that semiquantitative agreement with experiments can be obtained if care is exercised to balance interactions among the solute, protein, and water. On the other hand, qualitatively incorrect (i.e., wrong sign in Gamma(23)) results can be obtained if a solute model is constructed by directly taking parameters for chemically similar groups from an existing force field. Such sensitivity suggests that small solute thermodynamic data can be valuable in the development of accurate force field models of biomolecules. Further decomposition of Gamma(23) into group contributions leads to additional insights regarding the effects of small solutes on protein stability. For example, use of the CHARMM force field predicts that urea preferentially interacts with not only amide groups in the peptide backbone but also aliphatic groups, suggesting a role for these interactions in urea-induced protein denaturation; quantitatively, however, it is likely that the CHARMM force field overestimates the interaction between urea and aliphatic groups. The results with GB support a simple thermodynamic model that assumes additivity of preferential interaction between GB and various biomolecular surfaces.


Assuntos
Simulação de Dinâmica Molecular , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Betaína/química , Betaína/metabolismo , Propano/química , Conformação Proteica , Estabilidade Proteica , Soluções , Termodinâmica , Ureia/química , Ureia/metabolismo , Água/química
11.
Biochemistry ; 48(43): 10372-9, 2009 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-19757837

RESUMO

Noncovalent self-assembly of biopolymers is driven by molecular interactions between functional groups on complementary biopolymer surfaces, replacing interactions with water. Since individually these interactions are comparable in strength to interactions with water, they have been difficult to quantify. Solutes (osmolytes, denaturants) exert often large effects on these self-assembly interactions, determined in sign and magnitude by how well the solute competes with water to interact with the relevant biopolymer surfaces. Here, an osmometric method and a water-accessible surface area (ASA) analysis are developed to quantify and interpret the interactions of the remarkable osmolyte glycine betaine (GB) with molecular surfaces in water. We find that GB, lacking hydrogen bond donors, is unable to compete with water to interact with anionic and amide oxygens; this explains its effectiveness as an osmolyte in the Escherichia coli cytoplasm. GB competes effectively with water to interact with amide and cationic nitrogens (hydrogen bonding) and especially with aromatic hydrocarbon (cation-pi). The large stabilizing effect of GB on lac repressor-lac operator binding is predicted quantitatively from ASA information and shown to result largely from dehydration of anionic DNA phosphate oxygens in the protein-DNA interface. The incorporation of these results into theoretical and computational analyses will likely improve the ability to accurately model intra- and interprotein interactions. Additionally, these results pave the way for development of solutes as kinetic/mechanistic and thermodynamic probes of conformational changes and formation/disruption of molecular interfaces that occur in the steps of biomolecular self-assembly processes.


Assuntos
Betaína/química , Termodinâmica , Água/química , Amidas/química , Biopolímeros/química , Hidrocarbonetos Aromáticos/química , Modelos Químicos
12.
J Phys Chem C Nanomater Interfaces ; 113(6): 2171-2174, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19436772

RESUMO

Recently, we developed a quantitative interpretation of surface tension increments (STI) of salts, acids, and bases in terms of the solute (or salt ion) partitioning model (SPM). Here, we obtain an analogous SPM-based interpretation of surface tension increments of nonelectrolytes, which yields local-bulk partition coefficients (K(p)) quantifying the accumulation or exclusion of these solutes in the local region near the air-water surface, and the amount of water per unit area of that region (b1σ). Sucrose exhibits the largest positive STI (approximately 1.4 ergs cm(-2) Osm(-1)). Assuming that K(p) = 0 for sucrose (i.e. that it is completely excluded from the surface of water), these STI provide a minimum estimate of b1σ of 0.20 H(2)O/Å(2), or a minimum thickness of the surface region of approximately two layers of water at bulk density. This is the same value as obtained previously from analysis of surface tension and hydrocarbon solubility increments of Na(2)SO(4) and also for the interaction of glycine betaine with anionic carboxylate surface, indicating that this quantity is not a function of the type of solute or surface investigated and therefore that it may represent the molecular thickness of the region. Partition coefficients of other nonelectrolytes investigated range from moderately excluded (e.g urea) to moderately accumulated (e.g. glycerol, ethylene glycol); strongly accumulated surface active solutes (e.g. mono-substituted alcohols) were not included in this analysis. Partition coefficients for many salt ions obtained from STI and hydrocarbon solubility increments fall in a rank order which corresponds to the Hofmeister series for protein folding and protein solubility, indicating a common pattern of accumulation or exclusion of salt ions at the air-water surface and nonpolar surfaces of dissolved hydrocarbons and proteins; no such patterns are observed for nonelectrolytes.

13.
Methods Mol Biol ; 490: 179-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19157084

RESUMO

Salts and uncharged solutes in aqueous solution exert effects on a wide range of processes in which large amounts ofbiopolymer surface are buried or exposed (folding/unfolding, complexation/dissociation, or precipitation/dissolution). A simple two-state solute partitioning model (SPM, where the solute is partitioned between the bulk and surface water) allows the interpretation and prediction of the thermodynamic effects of various uncharged solutes (e.g., urea, glycine betaine) on protein and nucleic acid processes in terms of structural information. The correlation of solute effects with various coarse-grained types of biopolymer surface exposed or buried in a process provides a novel probe for investigation of large-scale conformational changes. Solutes that are fully excluded from one or more types of biopolymer surface are useful to quantify changes in water of hydration of these surfaces in biopolymer processes. Additionally, application of the SPM to the analysis of non-Coulombic salt effects on various model processes provides an estimate for the hydration layer at surfaces and shows that ion effects are additive and independent of the nature of the counterion.


Assuntos
Modelos Químicos , Proteínas/química , Sais/química , Água/química , Conformação Proteica
14.
J Phys Chem B ; 112(31): 9428-36, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18630860

RESUMO

Quantitative interpretation and prediction of Hofmeister ion effects on protein processes, including folding and crystallization, have been elusive goals of a century of research. Here, a quantitative thermodynamic analysis, developed to treat noncoulombic interactions of solutes with biopolymer surface and recently extended to analyze the effects of Hofmeister salts on the surface tension of water, is applied to literature solubility data for small hydrocarbons and model peptides. This analysis allows us to obtain a minimum estimate of the hydration b1 (H2O A(-2)), of hydrocarbon surface and partition coefficients Kp, characterizing the distribution of salts and salt ions between this hydration water and bulk water. Assuming that Na+ and SO4(2-) ions of Na2SO4 (the salt giving the largest reduction in hydrocarbon solubility as well as the largest increase in surface tension) are fully excluded from the hydration water at hydrocarbon surface, we obtain the same b1 as for air-water surface (approximately 0.18 H2O A(-2)). Rank orders of cation and anion partition coefficients for nonpolar surface follow the Hofmeister series for protein processes, but are strongly offset for cations in the direction of exclusion (preferential hydration). By applying a coarse-grained decomposition of water accessible surface area (ASA) into nonpolar, polar amide, and other polar surface and the same hydration b1 to interpret peptide solubility increments, we determine salt partition coefficients for amide surface. These partition coefficients are separated into single-ion contributions based on the observation that both Cl- and Na+ (also K+) occupy neutral positions in the middle of the anion and cation Hofmeister series for protein folding. Independent of this assignment, we find that all cations investigated are strongly accumulated at amide surface while most anions are excluded. Cation and anion effects are independent and additive, allowing successful prediction of Hofmeister salt effects on micelle formation and other processes from structural information (ASA).


Assuntos
Termodinâmica , Amidas/química , Hidrocarbonetos/química , Íons/química , Micelas , Modelos Químicos , Estrutura Molecular , Peptídeos/química , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Solubilidade
15.
J Phys Chem B ; 111(19): 5411-7, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17432897

RESUMO

We apply a recently developed surface-bulk partitioning model to interpret the effects of individual Hofmeister cations and anions on the surface tension of water. The most surface-excluded salt (Na2SO4) provides a minimum estimate for the number of water molecules per unit area of the surface region of 0.2 H2O A-2. This corresponds to a lower bound thickness of the surface region of approximately 6 A, which we assume is a property of this region and not of the salt investigated. At salt concentrations < or = 1 m, single-ion partition coefficients Kp,i, defined relative to Kp,Na+ = Kp,SO42- = 0, are found to be independent of bulk salt concentration and additive for different salt ions. Semiquantitative agreement with surface-sensitive spectroscopy data and molecular dynamics simulations is attained. In most cases, the rank orders of Kp,i for both anions and cations follow the conventional Hofmeister series, qualitative rankings of ions based on their effects on protein processes (folding, precipitation, assembly). Most anions that favor processes that expose protein surface to water (e.g., SCN-), and hence must interact favorably with (i.e., accumulate at) protein surface, are also accumulated at the air-water interface (Kp >1, e.g., Kp,SCN- =1.6). Most anions that favor processes that remove protein surface from water (e.g., F-), and hence are excluded from protein surface, are also excluded from the air-water interface (Kp,F- = 0.5). The guanidinium cation, a strong protein denaturant and therefore accumulated at the protein surface exposed in unfolding, is somewhat excluded from the air-water surface (Kp,GuH+ = 0.7), but is much less excluded than alkali metal cations (e.g., Kp,Na+ identical with 0, Kp,K+ = 0.1). Hence, cation Kp values for the air-water surface appear shifted (toward exclusion) as compared with values inferred for interactions of these cations with protein surface.


Assuntos
Ânions/química , Cátions/química , Sais/química , Água/química , Ar , Íons/química , Modelos Moleculares , Estrutura Molecular , Tensão Superficial , Termodinâmica
16.
Proc Natl Acad Sci U S A ; 103(39): 14278-81, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16980410

RESUMO

Recently, surface-sensitive spectroscopy data and molecular dynamics simulations have generated intense interest in the distribution of electrolyte ions between bulk water and the air/water interface. A partitioning model for cations and anions developed for biopolymer surface is extended here to interpret the effects of selected acids, bases, and salts on the surface tension of water. Data for electrolytes were analyzed by using a lower-bound value for the number of water molecules in the surface region [0.2 H(2)O A(-2) (approximately two layers of water)], obtained by assuming that both Na(+) and SO(4)(2-) (i.e., Na(2)SO(4)) are fully excluded from this region. Surface-bulk partition coefficients of atmospherically relevant anions and the proton are determined. Notably, we find that H(+) is most strongly surface-accumulated, I(-) is modestly accumulated, NO(3)(-) is evenly distributed, and OH(-) is weakly excluded.


Assuntos
Atmosfera/química , Água/química , Eletrólitos/química , Íons/química , Transição de Fase , Tensão Superficial , Termodinâmica , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA