Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Huan Jing Ke Xue ; 45(9): 5196-5203, 2024 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-39323138

RESUMO

Airborne microbes are affected by natural environmental factors and have become a global issue due to their potential threat to human health. To explore the effects of altitude on the communities of microbes and potential pathogenic bacteria, we sampled airborne microbes and soils at sites with different altitudes in Shigatse of Xizang. The results showed a significant difference in bacterial communities between air and soil and a decrease in the contribution of soil to airborne bacteria from the sites with a lower altitude to the sites with a higher altitude. The Chao1 indexes of airborne bacteria were significantly higher in the sites with a lower altitude compared to those with a higher altitude, and the bacterial Bray-Curtis distances between sites with a lower altitude were significantly lower than those between sites with a lower altitude and high altitude. These results indicated that altitude would affect the community patterns of airborne bacteria, and the transport of air would decrease the variations in airborne microbial communities between different sites. Proteobacteria, with 84%-91% of average abundance, predominated in the airborne bacterial communities, but different taxa were enriched in sites with different altitudes. For example, the genera of Flavobacterium and Lactobacillus were enriched in sites with a lower altitude and a higher altitude, respectively. A total of 78 potential bacterial pathogens were detected across all samples, and the relative abundance of them in bacterial communities ranged from 2.69% to 38.19%. These findings indicated that altitude would affect the community compositions of airborne bacteria and potential pathogenic bacteria and suggested the potential threat of airborne bacteria to human health. This study provided a scientific basis for better understanding the distributions of airborne microbes and for air quality improvement and disease prevention in China.


Assuntos
Microbiologia do Ar , Altitude , Bactérias , China , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/crescimento & desenvolvimento , Microbiologia do Solo , Monitoramento Ambiental , Proteobactérias/isolamento & purificação
2.
Singapore Med J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324928

RESUMO

INTRODUCTION: Anaphylaxis was the first serious adverse event (AE) of special interest surfaced in Singapore following coronavirus disease 2019 (COVID-19) vaccination. Individuals who developed physician-diagnosed severe allergic reactions to the mRNA vaccines would be medically ineligible for mRNA vaccines and offered non-mRNA alternatives. This paper describes anaphylaxis reports received by the Health Sciences Authority (HSA) and presents a review of individuals who received heterologous COVID-19 vaccination. METHODS: Reports of anaphylaxis associated with the COVID-19 vaccines received till 31 July 2022 were reviewed and adjudicated using the Brighton Collaboration case definition criteria by an HSA-appointed expert panel. Additional review was conducted for cases with heterologous vaccination for any subsequent reactions until administration of third dose of COVID-19 vaccines. RESULTS: Among 112 adjudicated anaphylaxis cases, majority occurred in females, adults and persons with allergy histories, which were consistent with global observations. Most cases (71%) occurred within 30 minutes of vaccination. The reporting incidence rates (IRs) of 0.67 and 0.55 per 100,000 administered doses for Comirnaty and Spikevax vaccines, respectively, were comparable with IRs reported overseas, whereas the IRs for non-mRNA vaccines (Sinovac-CoronaVac and Nuvaxovid) were much higher at 4.14 and 29.82 per 100,000 administered doses, respectively, likely due to selection bias. Review of the 20 cases following heterologous vaccination found varying reactions to subsequent vaccinations. CONCLUSION: Anaphylaxis is a rare but serious AE in which outcomes can be mitigated with timely medical intervention. The case review helped to guide vaccination strategies and added to the cumulative knowledge of safety with heterologous vaccination.

3.
Front Endocrinol (Lausanne) ; 15: 1349117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247917

RESUMO

Objective: Currently, distinct use of clinical data, routine laboratory indicators or the detection of diabetic autoantibodies in the diagnosis and management of diabetes mellitus is limited. Hence, this study was aimed to screen the indicators, and to establish and validate a multifactorial logistic regression model nomogram for the non-invasive differential prediction of type 1 diabetes mellitus. Methods: Clinical data, routine laboratory indicators, and diabetes autoantibody profiles of diabetic patients admitted between September 2018 and December 2022 were retrospectively analyzed. Logistic regression was used to select the independent influencing factors, and a prediction nomogram based on the multiple logistic regression model was constructed using these independent factors. Moreover, the predictive accuracy and clinical application value of the nomogram were evaluated using Receiver Operating Characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and clinical impact curves (CIC). Results: A total of 522 diabetic patients were included in this study. These patients were randomized into training and validation sets in a 7:3 ratio. The predictors screened included age, prealbumin (PA), high-density lipoprotein cholesterol (HDL-C), islet cells autoantibodies (ICA), islets antigen 2 autoantibodies (IA-2A), glutamic acid decarboxylase antibody (GADA), and C-peptide levels. Based on these factors, a multivariate model nomogram was constructed, which had an Area Under Curve (AUC) of 0.966 and 0.961 for the training set and validation set, respectively. Subsequently, the calibration curves demonstrated a strong accuracy of the graph; the DCA and CIC results indicated that the graph could be used as a non-invasive valid predictive tool for the differential diagnosis of type 1 diabetes mellitus, clinically. Conclusion: The established prediction model combining patient's age, PA, HDL-C, ICA, IA-2A, GADA, and C-peptide can assist in differential diagnosis of type 1 diabetes mellitus and type 2 diabetes mellitus and provides a basis for the clinical as well as therapeutic management of the disease.


Assuntos
Autoanticorpos , Diabetes Mellitus Tipo 1 , Valor Preditivo dos Testes , Humanos , Autoanticorpos/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Nomogramas , Glutamato Descarboxilase/imunologia , Adulto Jovem , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/imunologia , Curva ROC , Biomarcadores/sangue , Adolescente , Idoso
4.
Angew Chem Int Ed Engl ; : e202412553, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133133

RESUMO

Efficient photocatalytic CO2 reduction coupled with the photosynthesis of pure H2O2 is a challenging and significant task. Herein, using classical CO2 photoreduction site iron porphyrinate as the linker, Ag(I) clusters were spatially separated and evenly distributed within a new metal-organic framework (MOF), namely Ag27TPyP-Fe. With water as electron donors, Ag27TPyP-Fe exhibited remarkable performances in artificial photosynthetic overall reaction with CO yield of 36.5 µmol g-1 h-1 and ca. 100% selectivity, as well as H2O2 evolution rate of 35.9 µmol g-1 h-1. Since H2O2 in the liquid phase can be more readily separated from the gaseous products of CO2 photoreduction, high-purity H2O2 with a concentration up to 0.1 mM was obtained. Confirmed by theoretical calculations and the established energy level diagram, the reductive iron(II) porphyrinates and oxidative Ag(I) clusters within an integrated framework functioned synergistically to achieve artificial photosynthesis. Furthermore, photoluminescence spectroscopy and photoelectrochemical measurements revealed that the robust connection of Ag(I) clusters and iron porphyrinate ligands facilitated efficient charge separation and rapid electron transfer, thereby enhancing the photocatalytic activity.

5.
Diabetologia ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037604

RESUMO

AIMS/HYPOTHESIS: The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD. METHODS: Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c). RESULTS: In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing. CONCLUSIONS/INTERPRETATION: This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD. DATA AVAILABILITY: RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).

6.
Angew Chem Int Ed Engl ; : e202410625, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982877

RESUMO

Electrosynthesis of urea from CO2 and NO3- is a sustainable alternative to energy-intensive industrial processes. The challenge hindering the progress is the development of advanced electrocatalysts that yield urea with both high Faradaic efficiency (FE) and current density. In this work, we designed a new two-dimensional MOF, namely PcNi-Fe-O, constructed by nickel-phthalocyanine (NiPc) ligands and square-planar FeO4 nodes. PcNi-Fe-O exhibits remarkable performance to yield urea at a high current density of 10.1 mA cm-2 with a high FE(urea) of 54.1% in a neutral aqueous solution, surpassing those of most reported electrocatalysts. No obvious performance degradation was observed over 20 hours of continuous operation at the current density of 10.1 mA cm-2. By expanding the electrode area to 25 cm2 and operating for 8 hours, we obtained 0.164 g of high-purity urea, underscoring its potential for industrial applications. Mechanism study unveiled the enhanced performance might be ascribed to the synergistic interaction between NiPc and FeO4 sites. Specifically, NH3 produced at the FeO4 site can efficiently migrate and couple with the *NHCOOH intermediate adsorbed on the urea-producing site (NiPc). This synergistic effect results in a lower energy barrier for C-N bond formation than those of the reported catalysts with single active sites.

7.
Angew Chem Int Ed Engl ; 63(34): e202317648, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38837493

RESUMO

Molecular sieving is an ideal separation mechanism, but controlling pore size, restricting framework flexibility, and avoiding strong adsorption are all very challenging. Here, we report a flexible adsorbent showing molecular sieving at ambient temperature and high pressure, even under high humidity. While typical guest-induced transformations are observed, a high transition pressure of 16.6 atm is observed for C2H4 at 298 K because of very weak C2H4 adsorption (~16 kJ mol-1). Also, C2H6 is completely excluded below the pore-opening pressure of 7.7 atm, giving single-component selectivity of ca. 300. Quantitative high-pressure column breakthrough experiments using 1 : 1 C2H4/C2H6 mixtures at 10 atm as input confirm molecular sieving with C2H4 adsorption of 0.73 mmol g-1 or 32 cm3(STP) cm-3 and negligible C2H6 adsorption of 0.001(2) mmol g-1, and the adsorbent can be completely regenerated by inert gas purging. Furthermore, it is highly hydrophobic with negligible water adsorption, and the C2H4/C2H6 separation performance is unaffected at high humidity.

8.
Lipids Health Dis ; 23(1): 146, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760846

RESUMO

BACKGROUND: There is insufficient research on how gender-affirming hormone therapy (GAHT) affects body fat modifications in transwomen from China. It is unclear whether hormone therapy affects the prevalence of obesity and blood lipid levels within this population. The current research aimed to assess how GAHT and treatment duration had an impact on the change in and redistribution of body fat in Chinese transwomen. METHODS: This study included 40 transwomen who had not received GAHT and 59 who had. Body fat, blood lipid, and blood glucose levels were measured. GAHT is mainly a pharmacologic (estrogen and anti-androgen) treatment. The study also stratified participants based on the duration of GAHT to assess its impact on body fat distribution. The duration of GAHT was within one year, one to two years, two to three years, or more than three years. RESULTS: After receiving GAHT, total body fat increased by 19.65%, and the percentage of body fat increased by 17.63%. The arm, corrected leg, and leg regions showed significant increases in fat content (+ 24.02%, + 50.69%, and + 41.47%, respectively) and percentage (+ 25.19%, + 34.90%, and + 30.39%, respectively). The total visceral fat content decreased (-37.49%). Based on the diagnostic standards for a body mass index ≥ 28 or total body fat percentage ≥ 25% or 30%, the chance of developing obesity did not change significantly. Blood glucose levels significantly increased (+ 12.31%). Total cholesterol levels (-10.45%) decreased significantly. Fat changes in those who received GAHT for one to two years were significantly different from those who did not receive GAHT. CONCLUSION: After receiving GAHT, total body fat and regional fat increased in Chinese transwomen, and the body fat distribution changed from masculine to feminine, especially during the first two years. However, neither the increase in total body fat percentage nor the decrease in visceral fat content didn't bring about significant changes in the incidence of obesity, nor did triglycerides or low-density lipoprotein-cholesterol.


Assuntos
Pessoas Transgênero , Adulto , Feminino , Humanos , Masculino , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Povo Asiático , Glicemia/metabolismo , Distribuição da Gordura Corporal , Índice de Massa Corporal , Estudos de Casos e Controles , China/epidemiologia , População do Leste Asiático , Estrogênios/sangue , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Obesidade/sangue , Estudos Retrospectivos , Procedimentos de Readequação Sexual , Transexualidade/tratamento farmacológico , Transexualidade/sangue
9.
Sci Rep ; 14(1): 12282, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811763

RESUMO

To improve the utilization of byproduct gases in the steel plant, the coke oven gas (COG) methanation combined with blast furnace gas (BFG) and basic oxygen furnace gas (BOFG) was proposed in viewpoint of economy and environment. The optimization mathematics model based on Gibbs free energy minimization was established to predict the thermodynamic feasibility of the proposed methanation. To solve the proposed model, the convenient method was implemented by using the Gibbs module in Aspen Plus software. Effects of operation parameters on the methanation performance were revealed to identify the optimized conditions. To reduce the solid carbon concentration, it was found that the optimized conditions of temperature, pressure and stoichiometric number were 650 °C, 30 bar and 3.0, respectively. Moreover, it was discovered that 10 mol% of BFG or BOFG could be mixed into COG to obtain the maximum methane yield. In addition, it was testified that there were the good agreements between calculated results and industrial and published data, which indicated that the proposed methanation was thermodynamically feasible. Therefore, the simple and easy method was developed to evaluate the methanation operating conditions from the aspect of thermodynamic equilibrium, which provided the basic process conditions of byproduct gases methanation to enhance the steel plant efficiency and reduce carbon emissions.

10.
J Am Chem Soc ; 146(20): 14349-14356, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742424

RESUMO

High-purity CO2 rather than dilute CO2 (15 vol %, CO2/N2/O2 = 15:80:5, v/v/v) similar to the flue gas is currently used as the feedstock for the electroreduction of CO2, and the liquid products are usually mixed up with the cathode electrolyte, resulting in high product separation costs. In this work, we showed that a microporous conductive Bi-based metal-organic framework (Bi-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) can not only efficiently capture CO2 from the dilute CO2 under high humidity but also catalyze the electroreduction of the adsorbed CO2 into formic acid with a high current density of 80 mA cm-2 and a Faradaic efficiency of 90% at a very low cell voltage of 2.6 V. Importantly, the performance in a dilute CO2 atmosphere was close to that under a high-purity CO2 atmosphere. This is the first catalyst that can maintain exceptional eCO2RR performance in the presence of both O2 and N2. Moreover, by using dilute CO2 as the feedstock, a 1 cm-2 working electrode coating with Bi-HHTP can continuously produce a 200 mM formic acid aqueous solution with a relative purity of 100% for at least 30 h in a membrane electrode assembly (MEA) electrolyzer. The product does not contain electrolytes, and such a highly concentrated and pure formic acid aqueous solution can be directly used as an electrolyte for formic acid fuel cells. Comprehensive studies revealed that such a high performance might be ascribed to the CO2 capture ability of the micropores on Bi-HHTP and the lower Gibbs free energy of formation of the key intermediate *OCHO on the open Bi sites.

12.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561502

RESUMO

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastrite/patologia , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
13.
Chem Commun (Camb) ; 60(27): 3669-3672, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38456336

RESUMO

It is important and challenging to utilise CO2 and NO3- as a feedstock for electrosynthesis of urea. Herein, we reported a stable 2D metal-organic framework (MOF) Cu-HATNA, possessing planar CuO4 active sites, as an efficient electrocatalyst for coupling CO2 and NO3- into urea, achieving a high yield rate of 1.46 g h-1 gcat-1 with a current density of 44.2 mA cm-1 at -0.6 V vs. RHE. This performance surpasses most of the previously reported catalysts, revealing the great prospects of MOFs in sustainable urea synthesis.

14.
J Am Chem Soc ; 146(1): 1144-1152, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38164902

RESUMO

It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.

15.
J Gastroenterol Hepatol ; 39(4): 762-771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233085

RESUMO

BACKGROUND: Patients with decompensated cirrhosis face poor prognosis and increased mortality risk. Rifaximin, a non-absorbable antibiotic, has been shown to have beneficial effects in preventing complications and improving survival in these patients. However, the underlying mechanisms of rifaximin's effects remain unclear. METHODS: We obtained fecal samples from decompensated cirrhotic patients undergoing rifaximin treatment and controls, both at baseline and after 6 months of treatment. Shotgun metagenome sequencing profiled the gut microbiome, and untargeted metabolomics analyzed fecal metabolites. Linear discriminant and partial least squares discrimination analyses were used to identify differing species and metabolites between rifaximin-treated patients and controls. RESULTS: Forty-two patients were enrolled and divided into two groups (26 patients in the rifaximin group and 16 patients in the control group). The gut microbiome's beta diversity changed in the rifaximin group but remained unaffected in the control group. We observed 44 species with reduced abundance in the rifaximin group, including Streptococcus_salivarius, Streptococcus_vestibularis, Haemophilus_parainfluenzae, etc. compared to only four in the control group. Additionally, six species were enriched in the rifaximin group, including Eubacterium_sp._CAG:248, Prevotella_sp._CAG:604, etc., and 14 in the control group. Furthermore, rifaximin modulated different microbial functions compared to the control. Seventeen microbiome-related metabolites were altered due to rifaximin, while six were altered in the control group. CONCLUSION: Our study revealed distinct microbiome-metabolite networks regulated by rifaximin intervention in patients with decompensated cirrhosis. These findings suggest that targeting these specific metabolites or related bacteria might be a potential therapeutic strategy for decompensated cirrhosis.


Assuntos
Cirrose Hepática , Metagenoma , Humanos , Rifaximina/uso terapêutico , Cirrose Hepática/complicações , Resultado do Tratamento , Antibacterianos/uso terapêutico
16.
J Dig Dis ; 24(12): 681-690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108656

RESUMO

OBJECTIVES: Covert hepatic encephalopathy (CHE) negatively affects the health-related quality of life and increases the risk of overt HE (OHE) in patients with liver cirrhosis. However, the impact of CHE on long-term patient outcomes remains controversial. This study aimed to explore the association between CHE and disease progression and survival among cirrhotic patients. METHODS: This was a single-center prospective study that enrolled 132 hospitalized patients with cirrhosis, with an average follow-up period of 45.02 ± 23.06 months. CHE was diagnosed using the validated Chinese standardized psychometric hepatic encephalopathy score. RESULTS: CHE was detected in 35.61% cirrhotic patients. During the follow-up, patients with CHE had a higher risk of developing OHE (log-rank 5.840, P = 0.016), exacerbation of ascites (log-rank 4.789, P = 0.029), and portal vein thrombosis (PVT) (log-rank 8.738, P = 0.003). Cox multivariate regression analyses revealed that CHE was independently associated with the occurrence of OHE, exacerbation of ascites, and PVT. Furthermore, patients with progression of cirrhosis were more likely to be diagnosed as CHE (log-rank 4.462, P = 0.035). At the end of the follow-up, patients with CHE had a lower survival rate compared to those without CHE (log-rank 8.151, P = 0.004). CHE diagnosis (hazard ratio 2.530, P = 0.008), together with elder age and higher Child-Pugh score, were risk factors for impaired survival in cirrhotic patients. CONCLUSION: CHE is associated with disease progression and poor survival in patients with cirrhosis, indicating that CHE may serve as an independent predictor of poor prognosis among these patients.


Assuntos
Encefalopatia Hepática , Humanos , Idoso , Encefalopatia Hepática/etiologia , Estudos Prospectivos , Qualidade de Vida , Ascite/etiologia , Cirrose Hepática/complicações , Progressão da Doença
17.
Vaccine X ; 15: 100419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130887

RESUMO

Background: The real-world safety profile of COVID-19 mRNA vaccines remains incompletely elucidated. Methods: We performed a nationwide post-market safety surveillance analysis in Singapore, on vacinees aged 5 years and older, through mid-September 2022. Observed-over-expected (O/E) analyses were performed to identify potential safety signals among eight shortlisted adverse events of special interest (AESIs): strokes, cerebral venous thrombosis (CVT), acute myocardial infarction, myocarditis/pericarditis, pulmonary embolism, immune thrombocytopenia, convulsions and appendicitis. Self-controlled case series analyses (SCCS) were performed to validate signals of concern, occurring within 42 days of vaccination. Findings: Elevated risks were observed on O/E analyses for the following AESIs: myocarditis/pericarditis, [rate ratio (RR): 3.66, 95 % confidence interval (95 % CI): 2.71 to 4.94], appendicitis [RR: 1.14 (1.02 to 1.27)] and CVT [RR: 2.11 (1.18 to 3.77)]. SCCS analyses generated corroborative findings: myocarditis/pericarditis, [relative incidence (RI): 6.96 (3.95 to 12.27) at 1 to 7 days post-dose 2], CVT [RI: 4.30 (1.30 to 14.20) at 22 to 42 days post-dose 1] and appendicitis [RI: 1.31 (1.03 to 1.67) at 1 to 7 days post-dose 1]. Booster dose 1 continued to be associated with higher rates of myocarditis/pericarditis on O/E analysis [RR: 2.30, (1.39 to 3.80) and 1.69, (1.11 to 2.59)] at 21- and 42-days post-booster dose 1, respectively. Males aged 12 to 17 exhibited highest risks of both myocarditis/pericarditis [RI: 6.31 (1.36 to 29.3)] and appendicitis [RI: 2.01 (1.12 to 3.64)] after primary vaccination. Similarly, CVT was also predominantly observed in males aged above 50 (11 out of 16 cases), within 42-days of vaccination. Interpretation: Our data suggest that myocarditis/pericarditis, appendicitis and CVT are associated with primary vaccination using COVID-19 mRNA vaccines. Males at specific ages exhibit higher risks for all three AEs identified. The risk of myocarditis/pericarditis continues to be elevated after booster dose 1.

18.
J Am Chem Soc ; 145(49): 26783-26790, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014883

RESUMO

The electroreduction of CO2 into value-added liquid fuels holds great promise for addressing global environmental and energy challenges. However, achieving highly selective yielding of multi-carbon oxygenates through the electrochemical CO2 reduction reaction (eCO2RR) is a formidable task, primarily due to the sluggish asymmetric C-C coupling reaction. In this study, a novel metal-organic framework (CuSn-HAB) with unprecedented heterometallic Sn···Cu dual sites (namely, a pair of SnN2O2 and CuN4 sites bridged by µ-N atoms) was designed to overcome this limitation. CuSn-HAB demonstrated an impressive Faradic efficiency (FE) of 56(2)% for eCO2RR to alcohols, achieving a current density of 68 mA cm-2 at a low potential of -0.57 V (vs RHE). Notably, no significant degradation was observed over a continuous 35 h operation at the specified current density. Mechanistic investigations revealed that, in comparison to the copper site, the SnN2O2 site exhibits a higher affinity for oxygen atoms. This enhanced affinity plays a pivotal role in facilitating the generation of the key intermediate *OCH2. Consequently, compared to homometallic Cu···Cu dual sites (generally yielding ethylene product), the heterometallic dual sites were proved to be more thermodynamically favorable for the asymmetric C-C coupling between *CO and *OCH2, leading to the formation of the key intermediate *CO-*OCH2, which is favorable for yielding ethanol product.

19.
Angew Chem Int Ed Engl ; 62(52): e202311265, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37782029

RESUMO

Integration of CO2 capture capability from simulated flue gas and electrochemical CO2 reduction reaction (eCO2 RR) active sites into a catalyst is a promising cost-effective strategy for carbon neutrality, but is of great difficulty. Herein, combining the mixed gas breakthrough experiments and eCO2 RR tests, we showed that an Ag12 cluster-based metal-organic framework (1-NH2 , aka Ag12 bpy-NH2 ), simultaneously possessing CO2 capture sites as "CO2 relays" and eCO2 RR active sites, can not only utilize its micropores to efficiently capture CO2 from simulated flue gas (CO2 : N2 =15 : 85, at 298 K), but also catalyze eCO2 RR of the adsorbed CO2 into CO with an ultra-high CO2 conversion of 60 %. More importantly, its eCO2 RR performance (a Faradaic efficiency (CO) of 96 % with a commercial current density of 120 mA cm-2 at a very low cell voltage of -2.3 V for 300 hours and the full-cell energy conversion efficiency of 56 %) under simulated flue gas atmosphere is close to that under 100 % CO2 atmosphere, and higher than those of all reported catalysts at higher potentials under 100 % CO2 atmosphere. This work bridges the gap between CO2 enrichment/capture and eCO2 RR.

20.
Huan Jing Ke Xue ; 44(10): 5737-5745, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827789

RESUMO

To explore the effects of single or combined application of chlorine-and sulfur-based fertilizers on rice bioavailability of Cd in soils, pot experiments with reddish clayey soil (developed from quaternary red clay parent materials) under three exogenous Cd levels (0, 0.5, and 2.0 mg·kg-1) were conducted. Meanwhile, chlorine-based fertilizers (KCl, NH4Cl) and sulfur-based fertilizers[K2SO4, (NH4)2SO4] were added in different proportions. The soil pH, Cd morphology, and Cd accumulation in rice at different growth stages were analyzed. The results revealed that both chlorine-and sulfur-based fertilizers could acidify the soil; however, the effect of chlorine-based fertilizers was more significant. During the filling stage of rice, the soil pH value of the treatment of applying single chlorine-based fertilizer decreased by 0.28 on average compared with that of applying single sulfur-based fertilizer. At the maturity stage of rice, chlorine-based fertilizer could activate the residual Cd, whereas sulfur-based fertilizer passivated the acid-extracted Cd to its residual state. Compared with the single application of the same fertilizer, the combined application of chlorine-and sulfur-based fertilizers was more likely to promote the accumulation of Cd in rice plants. The highest Cd accumulation of brown rice was 0.21 mg·kg-1 (2.0 mg·kg-1 exogenous Cd level) in the 1:1 (mole ratios of Cl:S) treatment of chlorine-and sulfur-based fertilizers, which was 16.4% higher than that of single chlorine-based fertilizer and 113.3% higher than that of single sulfur-based fertilizer. Therefore, the combined application of chlorine-fertilizers and sulfur-based fertilizers will increase the concentration of Cd in brown rice. To ensure food quality and safety, it is more advisable to apply single sulfur-based fertilizer for rice planting.


Assuntos
Oryza , Poluentes do Solo , Solo , Fertilizantes/análise , Cloro/farmacologia , Cádmio/análise , Disponibilidade Biológica , Poluentes do Solo/análise , Halogênios , Argila , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA