Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 539: 21-34, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38176610

RESUMO

Patients receiving neuraxial treatment with morphine for pain relief often experience a distressing pruritus. Neuroinflammation-mediated plasticity of sensory synapses in the spinal cord is critical for the development of pain and itch. Caspase-6, as an intracellular cysteine protease, is capable of inducing central nociceptive sensitization through regulating synaptic transmission and plasticity. Given the tight interaction between protein kinase Mζ (PKMζ) and excitatory synaptic plasticity, this pre-clinical study investigates whether caspase-6 contributes to morphine-induced itch and chronic itch via PKMζ. Intrathecal morphine and contact dermatitis were used to cause pruritus in mice. Morphine antinociception, itch-induced scratching behaviors, spinal activity of caspase-6, and phosphorylation of PKMζ and ERK were examined. Caspase-6 inhibitor Z-VEID-FMK, exogenous caspase-6 and PKMζ inhibitor ZIP were utilized to reveal the mechanisms and prevention of itch. Herein, we report that morphine induces significant scratching behaviors, which is accompanied by an increase in spinal caspase-6 cleavage and PKMζ phosphorylation (but not expression). Intrathecal injection of Z-VEID-FMK drastically reduces morphine-induced scratch bouts and spinal phosphorylation of PKMζ, without abolishing morphine analgesia. Moreover, intrathecal strategies of ZIP dose-dependently reduce morphine-induced itch-like behaviors. Spinal phosphorylation of ERK following neuraxial morphine is down-regulated by ZIP therapy. Recombinant caspase-6 directly exhibits scratching behaviors and spinal phosphorylation of ERK, which is compensated by PKMζ inhibition. Also, spinal inhibition of caspase-6 and PKMζ reduces the generation and maintenance of dermatitis-induced chronic itch. Together, these findings demonstrate that spinal caspase-6 modulation of PKMζ phosphorylation is important in the development of morphine-induced itch and dermatitis-induced itch in mice.


Assuntos
Dermatite de Contato , Morfina , Humanos , Camundongos , Animais , Fosforilação , Proteínas Quinases/metabolismo , Caspase 6/metabolismo , Prurido/tratamento farmacológico , Medula Espinal/metabolismo , Dor/metabolismo , Dermatite de Contato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA