Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190010

RESUMO

Clear cell renal cell carcinoma (ccRCC) accounts for ~75% of kidney cancers. The biallelic inactivation of the von Hippel-Lindau tumor suppressor gene (VHL) is the truncal driver mutation of most cases of ccRCC. Cancer cells are metabolically reprogrammed and excrete modified nucleosides in larger amounts due to their increased RNA turnover. Modified nucleosides occur in RNAs and cannot be recycled by salvage pathways. Their potential as biomarkers has been demonstrated for breast or pancreatic cancer. To assess their suitability as biomarkers in ccRCC, we used an established murine ccRCC model, harboring Vhl, Trp53 and Rb1 (VPR) knockouts. Cell culture media of this ccRCC model and primary murine proximal tubular epithelial cells (PECs) were investigated by HPLC coupled to triple-quadrupole mass spectrometry using multiple-reaction monitoring. VPR cell lines were significantly distinguishable from PEC cell lines and excreted higher amounts of modified nucleosides such as pseudouridine, 5-methylcytidine or 2'-O-methylcytidine. The method's reliability was confirmed in serum-starved VPR cells. RNA-sequencing revealed the upregulation of specific enzymes responsible for the formation of those modified nucleosides in the ccRCC model. These enzymes included Nsun2, Nsun5, Pus1, Pus7, Naf1 and Fbl. In this study, we identified potential biomarkers for ccRCC for validation in clinical trials.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Carcinoma de Células Renais/patologia , Nucleosídeos/uso terapêutico , Reprodutibilidade dos Testes , Transcriptoma , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias Renais/patologia , RNA/uso terapêutico
2.
JCI Insight ; 7(24)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413415

RESUMO

Metastatic clear cell renal cell carcinomas (ccRCCs) are resistant to DNA-damaging chemotherapies, limiting therapeutic options for patients whose tumors are resistant to tyrosine kinase inhibitors and/or immune checkpoint therapies. Here we show that mouse and human ccRCCs were frequently characterized by high levels of endogenous DNA damage and that cultured ccRCC cells exhibited intact cellular responses to chemotherapy-induced DNA damage. We identify that pharmacological inhibition of the DNA damage-sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) with the orally administered, potent, and selective drug M4344 (gartisertib) induced antiproliferative effects in ccRCC cells. This effect was due to replication stress and accumulation of DNA damage in S phase. In some cells, DNA damage persisted into subsequent G2/M and G1 phases, leading to the frequent accumulation of micronuclei. Daily single-agent treatment with M4344 inhibited the growth of ccRCC xenograft tumors. M4344 synergized with chemotherapeutic drugs including cisplatin and carboplatin and the poly(ADP-ribose) polymerase inhibitor olaparib in mouse and human ccRCC cells. Weekly M4344 plus cisplatin treatment showed therapeutic synergy in ccRCC xenografts and was efficacious in an autochthonous mouse ccRCC model. These studies identify ATR inhibition as a potential novel therapeutic option for ccRCC.


Assuntos
Antineoplásicos , Carcinoma de Células Renais , Humanos , Animais , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Cisplatino , Proteínas Mutadas de Ataxia Telangiectasia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
3.
Cancers (Basel) ; 13(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638286

RESUMO

Specific inhibitors of HIF-2α have recently been approved for the treatment of ccRCC in VHL disease patients and have shown encouraging results in clinical trials for metastatic sporadic ccRCC. However, not all patients respond to therapy and pre-clinical and clinical studies indicate that intrinsic as well as acquired resistance mechanisms to HIF-2α inhibitors are likely to represent upcoming clinical challenges. It would be desirable to have additional therapeutic options for the treatment of HIF-2α inhibitor resistant ccRCCs. Here we investigated the effects on tumor growth and on the tumor microenvironment of three different direct and indirect HIF-α inhibitors, namely the HIF-2α-specific inhibitor PT2399, the dual HIF-1α/HIF-2α inhibitor Acriflavine, and the S1P signaling pathway inhibitor FTY720, in the autochthonous Vhl/Trp53/Rb1 mutant ccRCC mouse model and validated these findings in human ccRCC cell culture models. We show that FTY720 and Acriflavine exhibit therapeutic activity in several different settings of HIF-2α inhibitor resistance. We also identify that HIF-2α inhibition strongly suppresses T cell activation in ccRCC. These findings suggest prioritization of sphingosine pathway inhibitors for clinical testing in ccRCC patients and also suggest that HIF-2α inhibitors may inhibit anti-tumor immunity and might therefore be contraindicated for combination therapies with immune checkpoint inhibitors.

4.
Nat Commun ; 11(1): 4111, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807776

RESUMO

Mutational inactivation of VHL is the earliest genetic event in the majority of clear cell renal cell carcinomas (ccRCC), leading to accumulation of the HIF-1α and HIF-2α transcription factors. While correlative studies of human ccRCC and functional studies using human ccRCC cell lines have implicated HIF-1α as an inhibitor and HIF-2α as a promoter of aggressive tumour behaviours, their roles in tumour onset have not been functionally addressed. Herein we show using an autochthonous ccRCC model that Hif1a is essential for tumour formation whereas Hif2a deletion has only minor effects on tumour initiation and growth. Both HIF-1α and HIF-2α are required for the clear cell phenotype. Transcriptomic and proteomic analyses reveal that HIF-1α regulates glycolysis while HIF-2α regulates genes associated with lipoprotein metabolism, ribosome biogenesis and E2F and MYC transcriptional activities. HIF-2α-deficient tumours are characterised by increased antigen presentation, interferon signalling and CD8+ T cell infiltration and activation. Single copy loss of HIF1A or high levels of HIF2A mRNA expression correlate with altered immune microenvironments in human ccRCC. These studies reveal an oncogenic role of HIF-1α in ccRCC initiation and suggest that alterations in the balance of HIF-1α and HIF-2α activities can affect different aspects of ccRCC biology and disease aggressiveness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Células 3T3 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Linfócitos T CD8-Positivos/metabolismo , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imuno-Histoquímica , Inflamação/genética , Inflamação/metabolismo , Neoplasias Renais/genética , Espectrometria de Massas , Camundongos , Proteômica/métodos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA