Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 563, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718516

RESUMO

Ribosome-associated quality control (RQC) pathways monitor and respond to ribosome stalling. Using in vivo UV-crosslinking and mass spectrometry, we identified a C-terminal region in Hel2/Rqt1 as an RNA binding domain. Complementary crosslinking and sequencing data for Hel2 revealed binding to 18S rRNA and translated mRNAs. Hel2 preferentially bound mRNAs upstream and downstream of the stop codon. C-terminal truncation of Hel2 abolished the major 18S crosslink and polysome association, and altered mRNA binding. HEL2 deletion caused loss of RQC and, we report here, no-go decay (NGD), with comparable effects for Hel2 truncation including the RNA-binding site. Asc1 acts upstream of Hel2 in RQC and asc1∆ impaired Hel2 binding to 18S and mRNA. In conclusion: Hel2 is recruited or stabilized on translating 40S ribosomal subunits by interactions with 18S rRNA and Asc1. This 18S interaction is required for Hel2 function in RQC and NGD. Hel2 probably interacts with mRNA during translation termination.


Assuntos
RNA Ribossômico 18S/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Mutação/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
2.
Biochimie ; 156: 169-180, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30359641

RESUMO

Ribosomes consist of many small proteins and few large RNA molecules. Both components are necessary for ribosome functioning during translation. According to widely accepted view, bacterial ribosomes contain always the same complement of ribosomal proteins. Comparative bacterial genomics data indicates that several ribosomal proteins are encoded by multiple paralogous genes suggesting structural heterogeneity of ribosomes. In E. coli, two r-proteins bL31 and bL36 are encoded by two genes: rpmE and ykgM encode bL31 protein paralogs bL31A and bL31B, and rpmJ and ykgO encode bL36 protein paralogs bL36A and bL36B respectively. We have found several similarities and differences between ribosomes of exponential and stationary growth phases by using quantitative mass spectrometry and X-ray crystallography. First, composition of ribosome associating proteins changes profoundly as cells transition from exponential to stationary growth phase. Ribosomal core proteins bL31A and bL36A are replaced by bL31B and bL36B, respectively. Second, our X-ray structure of the 70S ribosome demonstrates that bL31B and bL36B proteins have similar ribosome binding sites to their A counterparts. Third, ribosome subpopulations containing A or B paralogs existed simultaneously demonstrating that E. coli ribosomes are heterogeneous with respect to their paralogous ribosomal protein composition that changes via protein exchange.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas Ribossômicas , Ribossomos , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo
3.
Mol Cell ; 68(3): 515-527.e6, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100052

RESUMO

Ribosomes synthesizing proteins containing consecutive proline residues become stalled and require rescue via the action of uniquely modified translation elongation factors, EF-P in bacteria, or archaeal/eukaryotic a/eIF5A. To date, no structures exist of EF-P or eIF5A in complex with translating ribosomes stalled at polyproline stretches, and thus structural insight into how EF-P/eIF5A rescue these arrested ribosomes has been lacking. Here we present cryo-EM structures of ribosomes stalled on proline stretches, without and with modified EF-P. The structures suggest that the favored conformation of the polyproline-containing nascent chain is incompatible with the peptide exit tunnel of the ribosome and leads to destabilization of the peptidyl-tRNA. Binding of EF-P stabilizes the P-site tRNA, particularly via interactions between its modification and the CCA end, thereby enforcing an alternative conformation of the polyproline-containing nascent chain, which allows a favorable substrate geometry for peptide bond formation.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/ultraestrutura , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Relação Estrutura-Atividade , Fator de Iniciação de Tradução Eucariótico 5A
4.
PeerJ ; 4: e2134, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375966

RESUMO

Members of the Caliciviridae family of positive sense RNA viruses cause a wide range of diseases in both humans and animals. The detailed characterization of the calicivirus life cycle had been hampered due to the lack of robust cell culture systems and experimental tools for many of the members of the family. However, a number of caliciviruses replicate efficiently in cell culture and have robust reverse genetics systems available, most notably feline calicivirus (FCV) and murine norovirus (MNV). These are therefore widely used as representative members with which to examine the mechanistic details of calicivirus genome translation and replication. The replication of the calicivirus RNA genome occurs via a double-stranded RNA intermediate that is then used as a template for the production of new positive sense viral RNA, which is covalently linked to the virus-encoded protein VPg. The covalent linkage to VPg occurs during genome replication via the nucleotidylylation activity of the viral RNA-dependent RNA polymerase. Using FCV and MNV, we used mass spectrometry-based approach to identify the specific amino acid linked to the 5' end of the viral nucleic acid. We observed that both VPg proteins are covalently linked to guanosine diphosphate (GDP) moieties via tyrosine positions 24 and 26 for FCV and MNV respectively. These data fit with previous observations indicating that mutations introduced into these specific amino acids are deleterious for viral replication and fail to produce infectious virus. In addition, we also detected serine phosphorylation sites within the FCV VPg protein with positions 80 and 107 found consistently phosphorylated on VPg-linked viral RNA isolated from infected cells. This work provides the first direct experimental characterization of the linkage of infectious calicivirus viral RNA to the VPg protein and highlights that post-translational modifications of VPg may also occur during the viral life cycle.

5.
Archaea ; 2016: 7316725, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28053595

RESUMO

Translation initiation factor 5A (IF5A) is essential and highly conserved in Eukarya (eIF5A) and Archaea (aIF5A). The activity of IF5A requires hypusine, a posttranslational modification synthesized in Eukarya from the polyamine precursor spermidine. Intracellular polyamine analyses revealed that agmatine and cadaverine were the main polyamines produced in Haloferax volcanii in minimal medium, raising the question of how hypusine is synthesized in this halophilic Archaea. Metabolic reconstruction led to a tentative picture of polyamine metabolism and aIF5A modification in Hfx. volcanii that was experimentally tested. Analysis of aIF5A from Hfx. volcanii by LC-MS/MS revealed it was exclusively deoxyhypusinylated. Genetic studies confirmed the role of the predicted arginine decarboxylase gene (HVO_1958) in agmatine synthesis. The agmatinase-like gene (HVO_2299) was found to be essential, consistent with a role in aIF5A modification predicted by physical clustering evidence. Recombinant deoxyhypusine synthase (DHS) from S. cerevisiae was shown to transfer 4-aminobutyl moiety from spermidine to aIF5A from Hfx. volcanii in vitro. However, at least under conditions tested, this transfer was not observed with the Hfx. volcanii DHS. Furthermore, the growth of Hfx. volcanii was not inhibited by the classical DHS inhibitor GC7. We propose a model of deoxyhypusine synthesis in Hfx. volcanii that differs from the canonical eukaryotic pathway, paving the way for further studies.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/enzimologia , Haloferax volcanii/metabolismo , Lisina/análogos & derivados , Fatores de Iniciação de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Cromatografia Líquida , Lisina/metabolismo , Espectrometria de Massas em Tandem
6.
J Proteome Res ; 15(2): 572-84, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26654049

RESUMO

Endometriosis is a prevalent health condition in women of reproductive age characterized by ectopic growth of endometrial-like tissue in the extrauterine environment. Thorough understanding of the molecular mechanisms underlying the disease is still incomplete. We dissected eutopic and ectopic endometrial primary stromal cell proteomes to a depth of nearly 6900 proteins using quantitative mass spectrometry with a spike-in SILAC standard. Acquired data revealed metabolic reprogramming of ectopic stromal cells with extensive upregulation of glycolysis and downregulation of oxidative respiration, a widespread metabolic phenotype known as the Warburg effect and previously described in many cancers. These changes in metabolism are additionally accompanied by attenuated aerobic respiration of ectopic endometrial stromal cells as measured by live-cell oximetry and by altered mRNA levels of respective enzyme complexes. Our results additionally highlight other molecular changes of ectopic endometriotic stromal cells indicating reduced apoptotic potential, increased cellular invasiveness and adhesiveness, and altered immune function. Altogether, these comprehensive proteomics data refine the current understanding of endometriosis pathogenesis and present new avenues for therapies.


Assuntos
Endometriose/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Células Estromais/metabolismo , Células Cultivadas , Cromatografia Líquida , Endometriose/genética , Endometriose/patologia , Metabolismo Energético/genética , Feminino , Expressão Gênica , Glicólise/genética , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Oximetria , Consumo de Oxigênio/genética , Proteoma/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem
7.
Angew Chem Int Ed Engl ; 54(34): 10030-4, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26136259

RESUMO

We have changed the amino acid set of the genetic code of Escherichia coli by evolving cultures capable of growing on the synthetic noncanonical amino acid L-ß-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) as a sole surrogate for the canonical amino acid L-tryptophan (Trp). A long-term cultivation experiment in defined synthetic media resulted in the evolution of cells capable of surviving Trp→[3,2]Tpa substitutions in their proteomes in response to the 20,899 TGG codons of the E. coli W3110 genome. These evolved bacteria with new-to-nature amino acid composition showed robust growth in the complete absence of Trp. Our experimental results illustrate an approach for the evolution of synthetic cells with alternative biochemical building blocks.


Assuntos
Alanina/análogos & derivados , Compostos Bicíclicos Heterocíclicos com Pontes/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Evolução Química , Proteoma/química , Alanina/química , Alanina/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteoma/genética , Proteoma/metabolismo
8.
Cell Rep ; 9(2): 476-83, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25310979

RESUMO

Bacterial ribosomes stall on polyproline stretches and require the elongation factor P (EF-P) to relieve the arrest. Yet it remains unclear why evolution has favored the development of EF-P rather than selecting against the occurrence of polyproline stretches in proteins. We have discovered that only a single polyproline stretch is invariant across all domains of life, namely a proline triplet in ValS, the tRNA synthetase, that charges tRNA(Val) with valine. Here, we show that expression of ValS in vivo and in vitro requires EF-P and demonstrate that the proline triplet located in the active site of ValS is important for efficient charging of tRNA(Val) with valine and preventing formation of mischarged Thr-tRNA(Val) as well as efficient growth of E. coli in vivo. We suggest that the critical role of the proline triplet for ValS activity may explain why bacterial cells coevolved the EF-P rescue system.


Assuntos
Sequência Conservada , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fatores de Alongamento de Peptídeos/genética , Peptídeos/genética , Valina-tRNA Ligase/genética , Sequência de Aminoácidos , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Mutação , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/metabolismo , Valina-tRNA Ligase/química , Valina-tRNA Ligase/metabolismo
9.
Nucleic Acids Res ; 42(19): 12189-99, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25294836

RESUMO

During the last step in 40S ribosome subunit biogenesis, the PIN-domain endonuclease Nob1 cleaves the 20S pre-rRNA at site D, to form the mature 18S rRNAs. Here we report that cleavage occurs in particles that have largely been stripped of previously characterized pre-40S components, but retain the endonuclease Nob1, its binding partner Pno1 (Dim2) and the atypical ATPase Rio1. Within the Rio1-associated pre-40S particles, in vitro pre-rRNA cleavage was strongly stimulated by ATP and required nucleotide binding by Rio1. In vivo binding sites for Rio1, Pno1 and Nob1 were mapped by UV cross-linking in actively growing cells. Nob1 and Pno1 bind overlapping regions within the internal transcribed spacer 1, and both bind directly over cleavage site D. Binding sites for Rio1 were within the core of the 18S rRNA, overlapping tRNA interaction sites and distinct from the related kinase Rio2. Site D cleavage occurs within pre-40S-60S complexes and Rio1-associated particles efficiently assemble into these complexes, whereas Pno1 appeared to be depleted relative to Nob1. We speculate that Rio1-mediated dissociation of Pno1 from cleavage site D is the trigger for final 18S rRNA maturation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Modelos Moleculares , Proteínas Nucleares/metabolismo , Clivagem do RNA , Precursores de RNA/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
10.
Nucleic Acids Res ; 42(16): 10711-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25143529

RESUMO

The polymerization of amino acids into proteins occurs on ribosomes, with the rate influenced by the amino acids being polymerized. The imino acid proline is a poor donor and acceptor for peptide-bond formation, such that translational stalling occurs when three or more consecutive prolines (PPP) are encountered by the ribosome. In bacteria, stalling at PPP motifs is rescued by the elongation factor P (EF-P). Using SILAC mass spectrometry of Escherichia coli strains, we identified a subset of PPP-containing proteins for which the expression patterns remained unchanged or even appeared up-regulated in the absence of EF-P. Subsequent analysis using in vitro and in vivo reporter assays revealed that stalling at PPP motifs is influenced by the sequence context upstream of the stall site. Specifically, the presence of amino acids such as Cys and Thr preceding the stall site suppressed stalling at PPP motifs, whereas amino acids like Arg and His promoted stalling. In addition to providing fundamental insight into the mechanism of peptide-bond formation, our findings suggest how the sequence context of polyproline-containing proteins can be modulated to maximize the efficiency and yield of protein production.


Assuntos
Proteínas de Escherichia coli/química , Peptídeos , Biossíntese de Proteínas , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/análise , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Peptídeos/análise , Ribossomos/metabolismo , Regulação para Cima
11.
Methods Mol Biol ; 1156: 213-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24791991

RESUMO

Label-free proteome quantification methods used in bottom-up mass-spectrometry based proteomics are gaining more popularity as they are easy to apply and can be integrated into different workflows without any extra effort or cost. In the label-free proteome quantification approach, samples of interest are prepared and analyzed separately. Mass-spectrometry is generally not recognized as a quantitative method as the ionization efficiency of peptides is dependent on composition of peptides. Label-free quantification methods have to overcome this limitation by additional computational calculations. There are several algorithms available that take into account the sequence and length of the peptides and compute the predicted abundance of proteins in the sample. Label-free methods can be divided into two categories: peptide peak intensity based quantification and spectral counting quantification that relies on the number of peptides identified from a given protein.This protocol will concentrate on spectral counting quantification-exponentially modified protein abundance index (emPAI). Normalized emPAI, most commonly derived from Mascot search results, can be used for broad comparison of entire proteomes. Absolute quantification of proteins based on emPAI values with or without added standards will be demonstrated. Guidelines will be given on how to easily integrate emPAI into existing data; for example, calculating emPAI based absolute protein abundances from iTRAQ data without added standards.


Assuntos
Proteômica , Espectrometria de Massas
12.
Proc Natl Acad Sci U S A ; 110(38): 15265-70, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003132

RESUMO

Ribosomes are the protein synthesizing factories of the cell, polymerizing polypeptide chains from their constituent amino acids. However, distinct combinations of amino acids, such as polyproline stretches, cannot be efficiently polymerized by ribosomes, leading to translational stalling. The stalled ribosomes are rescued by the translational elongation factor P (EF-P), which by stimulating peptide-bond formation allows translation to resume. Using metabolic stable isotope labeling and mass spectrometry, we demonstrate in vivo that EF-P is important for expression of not only polyproline-containing proteins, but also for specific subsets of proteins containing diprolyl motifs (XPP/PPX). Together with a systematic in vitro and in vivo analysis, we provide a distinct hierarchy of stalling triplets, ranging from strong stallers, such as PPP, DPP, and PPN to weak stallers, such as CPP, PPR, and PPH, all of which are substrates for EF-P. These findings provide mechanistic insight into how the characteristics of the specific amino acid substrates influence the fundamentals of peptide bond formation.


Assuntos
Escherichia coli K12/fisiologia , Fatores de Alongamento de Peptídeos/metabolismo , Prolina/metabolismo , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Motivos de Aminoácidos/genética , Cromatografia Líquida , Escherichia coli K12/metabolismo , Humanos , Proteômica , Espectrometria de Massas em Tandem , beta-Galactosidase
13.
J Virol ; 87(18): 10295-312, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864636

RESUMO

Alphavirus replicase complexes are initially formed at the plasma membrane and are subsequently internalized by endocytosis. During the late stages of infection, viral replication organelles are represented by large cytopathic vacuoles, where replicase complexes bind to membranes of endolysosomal origin. In addition to viral components, these organelles harbor an unknown number of host proteins. In this study, a fraction of modified lysosomes carrying functionally intact replicase complexes was obtained by feeding Semliki Forest virus (SFV)-infected HeLa cells with dextran-covered magnetic nanoparticles and later magnetically isolating the nanoparticle-containing lysosomes. Stable isotope labeling with amino acids in cell culture combined with quantitative proteomics was used to reveal 78 distinct cellular proteins that were at least 2.5-fold more abundant in replicase complex-carrying vesicles than in vesicles obtained from noninfected cells. These host components included the RNA-binding proteins PCBP1, hnRNP M, hnRNP C, and hnRNP K, which were shown to colocalize with the viral replicase. Silencing of hnRNP M and hnRNP C expression enhanced the replication of SFV, Chikungunya virus (CHIKV), and Sindbis virus (SINV). PCBP1 silencing decreased SFV-mediated protein synthesis, whereas hnRNP K silencing increased this synthesis. Notably, the effect of hnRNP K silencing on CHIKV- and SINV-mediated protein synthesis was opposite to that observed for SFV. This study provides a new approach for analyzing the proteome of the virus replication organelle of positive-strand RNA viruses and helps to elucidate how host RNA-binding proteins exert important but diverse functions during positive-strand RNA viral infection.


Assuntos
Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Lisossomos/virologia , Proteoma/análise , Vírus da Floresta de Semliki/fisiologia , Replicação Viral , Alphavirus , Vírus Chikungunya , Células Epiteliais/química , Células HeLa , Humanos , Marcação por Isótopo , Leporipoxvirus , Lisossomos/química , Magnetismo , Proteômica/métodos , Vírus da Floresta de Semliki/crescimento & desenvolvimento , Sindbis virus
14.
Nat Chem Biol ; 8(8): 695-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706199

RESUMO

Lys34 of the conserved translation elongation factor P (EF-P) is post-translationally lysinylated by YjeK and YjeA--a modification that is critical for bacterial virulence. Here we show that the currently accepted Escherichia coli EF-P modification pathway is incomplete and lacks a final hydroxylation step mediated by YfcM, an enzyme distinct from deoxyhypusine hydroxylase that catalyzes the final maturation step of eukaryotic initiation factor 5A, the eukaryotic EF-P homolog.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Lisina/química , Oxigenases de Função Mista/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Quimotripsina/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Espectrometria de Massas , Oxigenases de Função Mista/genética , Estrutura Molecular , Fatores de Alongamento de Peptídeos/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional
15.
Mol Ecol ; 21(14): 3516-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22486940

RESUMO

Osmoregulation is a vital physiological function for fish, as it helps maintain a stable intracellular concentration of ions in environments of variable salinities. We focused on a primarily freshwater species, the European whitefish (Coregonus lavaretus), to investigate the molecular mechanisms underlying salinity tolerance and examine whether these mechanisms differ between genetically similar populations that spawn in freshwater vs. brackishwater environments. A common garden experiment involving 27 families in two populations and five salinity treatments together with a large-scale, high-resolution mass spectrometry experiment that quantified 1500 proteins was conducted to assess phenotypic and proteomic responses during early development, from fertilization until hatching, in the studied populations. The populations displayed drastically different phenotypic and proteomic responses to salinity. Freshwater-spawning whitefish showed a significantly higher mortality rate in higher salinity treatments. Calcium, an ion involved in osmotic stress sensing, had a central role in the observed proteomic responses. Brackishwater-spawning fish were capable of viable osmoregulation, which was modulated by cortisol, an important seawater-adaptation hormone in teleost fish. Several proteins were identified to play key roles in osmoregulation, most importantly a highly conserved cytokine, tumour necrosis factor, whereas calcium receptor activities were associated with salinity adaptation. These results imply that individuals from these populations are most likely adapted to their local environments, even though the baseline level of genetic divergence between them is low (F(ST)=0.049). They also provide clues for choosing candidate loci for studying the molecular basis of salinity adaptation in other species. Further, our approach provides an example of how proteomic methods can be successfully used to obtain novel insights into the molecular mechanisms behind adaptation in non-model organism.


Assuntos
Adaptação Fisiológica/genética , Proteômica , Salinidade , Salmonidae/fisiologia , Animais , Cálcio/metabolismo , Feminino , Água Doce , Genética Populacional , Masculino , Fenótipo , Mapas de Interação de Proteínas , Salmonidae/genética , Água do Mar , Fator de Necrose Tumoral alfa/metabolismo , Equilíbrio Hidroeletrolítico/genética
16.
FEBS Lett ; 585(19): 2979-85, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21855544

RESUMO

Positive sense ssRNA virus genomes from several genera have a viral protein genome-linked (VPg) attached over a phosphodiester bond to the 5' end of the genome. The VPgs of Southern bean mosaic virus (SBMV) and Ryegrass mottle virus (RGMoV) were purified from virions and analyzed by mass spectrometry. SBMV VPg was determined to be linked to RNA through a threonine residue at position one, whereas RGMoV VPg was linked to RNA through a serine also at the first position. In addition, we identified the termini of the corresponding VPgs and discovered three and seven phosphorylation sites in SBMV and RGMoV VPgs, respectively. This is the first report on the use of threonine for linking RNA to VPg.


Assuntos
Genoma Viral , Vírus do Mosaico/genética , RNA Viral/genética , Treonina/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Espectrometria de Massas , Dados de Sequência Molecular , Vírus do Mosaico/metabolismo , Processamento de Proteína Pós-Traducional , RNA Viral/metabolismo , Proteínas Virais/química
17.
Mol Microbiol ; 80(1): 54-67, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21320180

RESUMO

Inhibitors of protein synthesis cause defects in the assembly of ribosomal subunits. In response to treatment with the antibiotics erythromycin or chloramphenicol, precursors of both large and small ribosomal subunits accumulate. We have used a pulse-labelling approach to demonstrate that the accumulating subribosomal particles maturate into functional 70S ribosomes. The protein content of the precursor particles is heterogeneous and does not correspond with known assembly intermediates. Mass spectrometry indicates that production of ribosomal proteins in the presence of the antibiotics correlates with the amounts of the individual ribosomal proteins within the precursor particles. Thus, treatment of cells with chloramphenicol or erythromycin leads to an unbalanced synthesis of ribosomal proteins, providing the explanation for formation of assembly-defective particles. The operons for ribosomal proteins show a characteristic pattern of antibiotic inhibition where synthesis of the first proteins is inhibited weakly but gradually increases for the subsequent proteins in the operon. This phenomenon most likely reflects translational coupling and allows us to identify other putative coupled non-ribosomal operons in the Escherichia coli chromosome.


Assuntos
Antibacterianos/farmacologia , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Cloranfenicol/farmacologia , Eritromicina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ribossômicas/genética , Subunidades Ribossômicas/efeitos dos fármacos , Subunidades Ribossômicas/metabolismo , Ribossomos/genética , Espectrometria de Massas em Tandem
18.
J Gen Virol ; 92(Pt 2): 445-52, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21068217

RESUMO

Sobemoviruses possess a viral genome-linked protein (VPg) attached to the 5' end of viral RNA. VPg is processed from the viral polyprotein. In the current study, Cocksfoot mottle virus (CfMV) and Rice yellow mottle virus (RYMV) VPgs were purified from virions and analysed by mass spectrometry. The cleavage sites in the polyprotein and thereof the termini of VPg were experimentally proven. The lengths of the mature VPgs were determined to be 78 and 79 aa residues, respectively. The amino acid residues covalently linked to RNA in the two VPgs were, surprisingly, not conserved; it is a tyrosine at position 5 of CfMV VPg and serine at position 1 of RYMV VPg. Phosphorylations were identified in CfMV and RYMV VPgs with two positionally similar locations T20/S14 and S71/S72, respectively. RYMV VPg contains an additional phosphorylation site at S41.


Assuntos
Vírus de Plantas/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Avena/virologia , Evolução Molecular , Regulação Viral da Expressão Gênica/fisiologia , Variação Genética , Anotação de Sequência Molecular , Oryza/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Vírus de Plantas/genética , Ligação Proteica
19.
J Biol Chem ; 285(39): 30079-90, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20643644

RESUMO

The Sonic hedgehog (Shh) signaling pathway controls a variety of developmental processes and is implicated in tissue homeostasis maintenance and neurogenesis in adults. Recently, we identified Ulk3 as an active kinase able to positively regulate Gli proteins, mediators of the Shh signaling in mammals. Here, we provide several lines of evidence that Ulk3 participates in the transduction of the Shh signal also independently of its kinase activity. We demonstrate that Ulk3 through its kinase domain interacts with Suppressor of Fused (Sufu), a protein required for negative regulation of Gli proteins. Sufu blocks Ulk3 autophosphorylation and abolishes its ability to phosphorylate and positively regulate Gli proteins. We show that Shh signaling destabilizes the Sufu-Ulk3 complex and induces the release of Ulk3. We demonstrate that the Sufu-Ulk3 complex, when co-expressed with Gli2, promotes generation of the Gli2 repressor form, and that reduction of the Ulk3 mRNA level in Shh-responsive cells results in higher potency of the cells to transmit the Shh signal. Our data suggests a dual function of Ulk3 in the Shh signal transduction pathway and propose an additional way of regulating Gli proteins by Sufu, through binding to and suppression of Ulk3.


Assuntos
Proteínas Hedgehog/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Hedgehog/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Células NIH 3T3 , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco
20.
Mol Microbiol ; 75(4): 801-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19968789

RESUMO

Ribosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins. Accumulating damage to ribosomal RNA or proteins can disturb ribosome functioning. Organisms could benefit from degrading or possibly repairing inactive or partially active ribosomes. Reactivation of chemically damaged ribosomes by a process of protein replacement was studied in vitro. Ribosomes were inactivated by chemical modification of Cys residues. Incubation of modified ribosomes with total ribosomal proteins led to reactivation of translational activity. Intriguingly, ribosomal proteins extracted by LiCl are equally active in the restoration of ribosome function. Incubation of 70S ribosomes with isotopically labelled r-proteins followed by separation of ribosomes was used to identify exchangeable proteins. A similar set of proteins was found to be exchanged in vivo under stress conditions in the stationary phase. We propose that repair of damaged ribosomes might be an important mechanism for maintaining protein synthesis activity following chemical damage.


Assuntos
Escherichia coli/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA