Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 423, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684895

RESUMO

Snow is a major, climate-sensitive feature of the Earth's surface and catalyst of fundamentally important ecosystem processes. Understanding how snow influences sentinel species in rapidly changing mountain ecosystems is particularly critical. Whereas effects of snow on food availability, energy expenditure, and predation are well documented, we report how avalanches exert major impacts on an ecologically significant mountain ungulate - the coastal Alaskan mountain goat (Oreamnos americanus). Using long-term GPS data and field observations across four populations (421 individuals over 17 years), we show that avalanches caused 23-65% of all mortality, depending on area. Deaths varied seasonally and were directly linked to spatial movement patterns and avalanche terrain use. Population-level avalanche mortality, 61% of which comprised reproductively important prime-aged individuals, averaged 8% annually and exceeded 22% when avalanche conditions were severe. Our findings reveal a widespread but previously undescribed pathway by which snow can elicit major population-level impacts and shape demographic characteristics of slow-growing populations of mountain-adapted animals.


Assuntos
Avalanche , Neve , Animais , Ecossistema , Ruminantes/fisiologia , Estações do Ano , Dinâmica Populacional , Alaska , Clima , Mudança Climática , Masculino
2.
Sci Rep ; 11(1): 10032, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976297

RESUMO

Large magnitude snow avalanches pose a hazard to humans and infrastructure worldwide. Analyzing the spatiotemporal behavior of avalanches and the contributory climate factors is important for understanding historical variability in climate-avalanche relationships as well as improving avalanche forecasting. We used established dendrochronological methods to develop a long-term (1867-2019) regional avalanche chronology for the Rocky Mountains of northwest Montana using tree-rings from 647 trees exhibiting 2134 avalanche-related growth disturbances. We then used principal component analysis and a generalized linear autoregressive moving average model to examine avalanche-climate relationships. Historically, large magnitude regional avalanche years were characterized by stormy winters with positive snowpack anomalies, with avalanche years over recent decades increasingly influenced by warmer temperatures and a shallow snowpack. The amount of snowpack across the region, represented by the first principal component, is shown to be directly related to avalanche probability. Coincident with warming and regional snowpack reductions, a decline of ~ 14% (~ 2% per decade) in overall large magnitude avalanche probability is apparent through the period 1950-2017. As continued climate warming drives further regional snowpack reductions in the study region our results suggest a decreased probability of regional large magnitude avalanche frequency associated with winters characterized by large snowpacks and a potential increase in large magnitude events driven by warming temperatures and spring precipitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA