Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ambio ; 49(2): 391-406, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31168701

RESUMO

Declining physiological status in marine top consumers has been observed worldwide. We investigate changes in the physiological status and population/community traits of six consumer species/groups in the Baltic Sea (1993-2014), spanning four trophic levels and using metrics currently operational or proposed as indicators of food-web status. We ask whether the physiological status of consumers can be explained by food-web structure and prey food value. This was tested using partial least square regressions with status metrics for gray seal, cod, herring, sprat and the benthic predatory isopod Saduria as response variables, and abundance and food value of their prey, abundance of competitors and predators as predictors. We find evidence that the physiological status of cod, herring and sprat is influenced by competition, predation, and prey availability; herring and sprat status also by prey size. Our study highlights the need for management approaches that account for species interactions across multiple trophic levels.


Assuntos
Cadeia Alimentar , Comportamento Predatório , Animais , Países Bálticos , Peixes , Alimentos Marinhos
2.
Ecol Evol ; 6(24): 8919-8930, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28035280

RESUMO

The coexistence of competing species relies on niche partitioning. Competitive exclusion is likely inevitable at high niche overlap, but such divide between competitors may be bridged if environmental circumstances displace competitor niches to enhance partitioning. Foraging-niche dimension can be influenced by environmental characteristics, and if competitors react differently to such conditions, coexistence can be facilitated. We here experimentally approach the partitioning effects of environmental conditions by evaluating the influence of water turbulence on foraging-niche responses in two competing fish species, Eurasian perch Perca fluviatilis and roach Rutilus rutilus, selecting from planktonic and benthic prey. In the absence of turbulence, both fish species showed high selectivity for benthic chironomid larvae. R. rutilus fed almost exclusively on zoobenthos, whereas P. fluviatilis complemented the benthic diet with zooplankton (mainly copepods). In turbulent water, on the other hand, the foraging-niche widths of both R. rutilus and P. fluviatilis increased, while their diet overlap simultaneously decreased, caused by 20% of the R. rutilus individuals turning to planktonic (mainly bosminids) prey, and by P. fluviatilis increasing foraging on littoral/benthic food sources. We show that moderate physical disturbance of environments, such as turbulence, can enhance niche partitioning and thereby coexistence of competing foragers. Turbulence affects prey but not fish swimming capacities, with consequences for prey-specific distributions and encounter rates with fish of different foraging strategies (pause-travel P. fluviatilis and cruise R. rutilus). Water turbulence and prey community structure should hereby affect competitive interaction strengths among fish species, with consequences for coexistence probability as well as community and system compositions.

3.
PLoS One ; 9(11): e111942, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375952

RESUMO

In aquatic ecosystems, predation is affected both by turbulence and visibility, but the combined effects are poorly known. Both factors are changing in lakes in the Northern Hemisphere; the average levels of turbulence are predicted to increase due to increasing wind activities, while water transparency is decreasing, e.g., due to variations in precipitation, and sediment resuspension. We explored experimentally how turbulence influenced the effects of planktivorous fish and invertebrate predators on zooplankton when it was combined with low visibility caused by high levels of water color. The study was conducted as a factorial design in 24 outdoor ponds, using the natural zooplankton community as a prey population. Perch and roach were used as vertebrate predators and Chaoborus flavicans larvae as invertebrate predators. In addition to calm conditions, the turbulent dissipation rate used in the experiments was 10-6 m2 s-3, and the water color was 140 mg Pt L-1. The results demonstrated that in a system dominated by invertebrates, predation pressure on cladocerans increased considerably under intermediate turbulence. Under calm conditions, chaoborids caused only a minor reduction in the crustacean biomass. The effect of fish predation on cladocerans was slightly reduced by turbulence, while predation on cyclopoids was strongly enhanced. Surprisingly, under turbulent conditions fish reduced cyclopoid biomass, whereas in calm water it increased in the presence of fish. We thus concluded that turbulence affects fish selectivity. The results suggested that in dystrophic invertebrate-dominated lakes, turbulence may severely affect the abundance of cladocerans. In fish-dominated dystrophic lakes, on the other hand, turbulence-induced changes in planktivory may considerably affect copepods instead of cladocerans. In lakes inhabited by both invertebrates and fish, the response of top-down regulation to turbulence resembles that in fish-dominated systems, due to intraguild predation. The changes in planktivorous predation induced by abiotic factors may possibly cascade to primary producers.


Assuntos
Crustáceos/fisiologia , Cyprinidae/fisiologia , Dípteros/fisiologia , Percas/fisiologia , Zooplâncton/fisiologia , Animais , Biomassa , Cadeia Alimentar , Lagos , Comportamento Predatório/fisiologia , Água/química , Qualidade da Água
4.
Ambio ; 40(5): 447-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21848134

RESUMO

Climate change scenarios concerning the Baltic Sea predict increase in surface water temperatures. Pikeperch (Sander lucioperca (L.)) inhabits the coastal areas of the northern Baltic Sea and is an important fish species for the Finnish fisheries. The year-class strength of pikeperch varies strongly between years and significantly depends on water temperature. We aimed to study the effects of changing temperature conditions on pikeperch fisheries and distribution based on commercial catch data from the period 1980-2008 in the Finnish coastal areas of the Baltic Sea. The results indicated that warmer summers will produce stronger pikeperch year-classes that consequently contribute significantly to the future catches. The average temperature in June-July explained 40% of the variation in the year-class catches in the Gulf of Finland and 73% in July-August in the Archipelago Sea. During the study period, the distribution of pikeperch catches expanded toward north along the coasts of the Bothnian Sea.


Assuntos
Mudança Climática , Animais , Monitoramento Ambiental , Peixes , Oceanos e Mares
5.
Naturwissenschaften ; 93(7): 356-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16604334

RESUMO

Increased turbidity reduces visibility in the water column, which can negatively affect vision-oriented fish and their ability to detect prey. Young fish could consequently benefit from high turbidity levels that can provide a protective cover, reducing predation pressure. Perch (Perca fluviatilis) are commonly found in littoral zones of temperate lakes and coastal areas of the Baltic Sea. Pikeperch (Sander lucioperca) spawn in these areas, so perch is a potential predator for pikeperch larvae. We conducted laboratory experiments to test the predation of perch on pikeperch larvae at different turbidity levels (5-85 nephelometric turbidity units), densities of pikeperch larvae (2-21 individuals l(-1)) and volumes of water (10-45 l). The logistic regression showed that the probability of larvae eaten depended significantly on turbidity and volume of water in the bags, while density of larvae was not significant. However, because container size is known to affect predation, the data was divided into two groups based on water volume (10-20 and 25-45 l) to reduce the effects of container size. In either group, probability of predation did not significantly depend on volume, whereas turbidity was significant in both groups, while density was significant in larger water volumes. Thus, high turbidity impaired perch predation and protected pikeperch larvae from perch predation. Because density of larvae was also a significant factor affecting predation of perch, the dispersal of pikeperch larvae from spawning areas should also increase the survival of larvae.


Assuntos
Percas/fisiologia , Perciformes/fisiologia , Comportamento Predatório , Animais , Larva , Nefelometria e Turbidimetria , Percas/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Densidade Demográfica , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA