Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15506, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326349

RESUMO

We demonstrate quantum emission capabilities from boron nitride structures which are relevant for practical applications and can be seamlessly integrated into a variety of heterostructures and devices. First, the optical properties of polycrystalline BN films grown by metalorganic vapour-phase epitaxy are inspected. We observe that these specimens display an antibunching in the second-order correlation functions, if the broadband background luminescence is properly controlled. Furthermore, the feasibility to use flexible and transparent substrates to support hBN crystals that host quantum emitters is explored. We characterise hBN powders deposited onto polydimethylsiloxane films, which display quantum emission characteristics in ambient environmental conditions.

2.
Rev Sci Instrum ; 92(12): 123909, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972398

RESUMO

We present an experimental setup developed to perform optical spectroscopy experiments (Raman scattering and photoluminescence measurements) with a micrometer spatial resolution in an extreme environment of low temperature, high magnetic field, and high pressure. This unique experimental setup, to the best of our knowledge, allows us to deeply explore the phase diagram of condensed matter systems by independently tuning these three thermodynamic parameters while monitoring the low-energy excitations (electronic, phononic, or magnetic excitations) to spatially map the Raman scattering response or to investigate objects with low dimensions. We apply this technique to bulk FePS3, a layered antiferromagnet with a Néel temperature of T ≈ 120 K.

3.
Nat Commun ; 10(1): 2639, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201328

RESUMO

Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus confirming a crossover to direct gap in the monolayer limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA