RESUMO
Lithium-rich layered oxides (LRLOs) are one of the most attractive families among future positive electrode materials for the so-called fourth generation of lithium-ion batteries (LIBs). Their electrochemical performance is enabled by the unique ambiguous crystal structure that is still not well understood despite decades of research. In the literature, a clear structural model able to describe their crystallographic features is missing thereby hindering a clear rationalization of the interplay between synthesis, structure, and functional properties. Here, the structure of a specific LRLO, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2, using synchrotron X-ray diffraction (XRD), neutron diffraction (ND), and High-Resolution Transmission Electron Microscopy (HR-TEM), is analyzed. A systematic approach is applied to model diffraction patterns of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2 by using the Rietveld refinement method considering the R 3 ¯ $\bar{3}$ m and C2/m unit cells as the prototype structures. Here, the relative ability of a variety of structural models is compared to match the experimental diffraction pattern evaluating the impact of defects and supercells derived from the R 3 ¯ $\bar{3}$ m structure. To summarize, two possible models able to reconcile the description of experimental data are proposed here for the structure of Li1.28Mn0.54Ni0.13Co0.02Al0.03O2: namely a monoclinic C2/m defective lattice (prototype Li2MnO3) and a monoclinic defective supercell derived from the rhombohedral R 3 ¯ $\bar{3}$ m unit cell (prototype LiCoO2).
RESUMO
Microglial cells play a critical role in glioblastoma multiforme (GBM) progression, which is considered a highly malignant brain cancer. The activation of microglia can either promote or inhibit GBM growth depending on the stage of the tumor development and on the microenvironment conditions. The current treatments for GBM have limited efficacy; therefore, there is an urgent need to develop novel and efficient strategies for drug delivery and targeting: in this context, a promising strategy consists of using nanoplatforms. This study investigates the microglial response and the therapeutic efficacy of dual-cell membrane-coated and doxorubicin-loaded hexagonal boron nitride nanoflakes tested on human microglia and GBM cells. Obtained results show promising therapeutic effects on glioma cells and an M2 microglia polarization, which refers to a specific phenotype or activation state that is associated with anti-inflammatory and tissue repair functions, highlighted through proteomic analysis.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Microglia , Proteômica , Glioblastoma/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Encefálicas/patologia , Membrana Celular/patologia , Microambiente Tumoral/fisiologia , Linhagem Celular TumoralRESUMO
The search for safe electrolytes to promote the application of lithium-sulfur (Li-S) batteries may be supported by the investigation of viscous glyme solvents. Hence, electrolytes using nonflammable tetraethylene glycol dimethyl ether added by lowly viscous 1,3-dioxolane (DOL) are herein thoroughly investigated for sustainable Li-S cells. The electrolytes are characterized by low flammability, a thermal stability of â¼200 °C, ionic conductivity exceeding 10-3 S cm-1 at 25 °C, a Li+ transference number of â¼0.5, electrochemical stability window from 0 to â¼4.4 V vs Li+/Li, and a Li stripping-deposition overpotential of â¼0.02 V. The progressive increase of the DOL content from 5 to 15 wt % raises the activation energy for Li+ motion, lowers the transference number, slightly limits the anodic stability, and decreases the Li/electrolyte resistance. The electrolytes are used in Li-S cells with a composite consisting of sulfur and multiwalled carbon nanotubes mixed in the 90:10 weight ratio, exploiting an optimized current collector. The cathode is preliminarily studied in terms of structure, thermal behavior, and morphology and exploited in a cell using standard electrolyte. This cell performs over 200 cycles, with sulfur loading increased to 5.2 mg cm-2 and the electrolyte/sulfur (E/S) ratio decreased to 6 µL mg-1. The above sulfur cathode and the glyme-based electrolytes are subsequently combined in safe Li-S batteries, which exhibit cycle life and delivered capacity relevantly influenced by the DOL content within the studied concentration range.
RESUMO
Lithium-oxygen (Li-O2) batteries are nowadays among the most appealing next-generation energy storage systems in view of a high theoretical capacity and the use of transition-metal-free cathodes. Nevertheless, the practical application of these batteries is still hindered by limited understanding of the relationships between cell components and performances. In this work, we investigate a Li-O2 battery by originally screening different gas diffusion layers (GDLs) characterized by low specific surface area (<40 m2 g-1) with relatively large pores (absence of micropores), graphitic character, and the presence of a fraction of the hydrophobic PTFE polymer on their surface (<20 wt %). The electrochemical characterization of Li-O2 cells using bare GDLs as the support indicates that the oxygen reduction reaction (ORR) occurs at potentials below 2.8 V vs Li+/Li, while the oxygen evolution reaction (OER) takes place at potentials higher than 3.6 V vs Li+/Li. Furthermore, the relatively high impedance of the Li-O2 cells at the pristine state remarkably decreases upon electrochemical activation achieved by voltammetry. The Li-O2 cells deliver high reversible capacities, ranging from â¼6 to â¼8 mA h cm-2 (referred to the geometric area of the GDLs). The Li-O2 battery performances are rationalized by the investigation of a practical Li+ diffusion coefficient (D) within the cell configuration adopted herein. The study reveals that D is higher during ORR than during OER, with values depending on the characteristics of the GDL and on the cell state of charge. Overall, D values range from â¼10-10 to â¼10-8 cm2 s-1 during the ORR and â¼10-17 to â¼10-11 cm2 s-1 during the OER. The most performing GDL is used as the support for the deposition of a substrate formed by few-layer graphene and multiwalled carbon nanotubes to improve the reaction in a Li-O2 cell operating with a maximum specific capacity of 1250 mA h g-1 (1 mA h cm-2) at a current density of 0.33 mA cm-2. XPS on the electrode tested in our Li-O2 cell setup suggests the formation of a stable solid electrolyte interphase at the surface which extends the cycle life.
RESUMO
[This corrects the article DOI: 10.1039/D1NA00733E.].
RESUMO
Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm-1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g-1 at 0.02 A g-1, optimal rate capability (76 F g-1 at 10 A g-1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses.
RESUMO
A comparative study on sulfur-based composite electrodes comprising different few-layer graphene contents prepared via a facile evaporation method is presented here. The active material production process employed here, exploring different sulfur-few layer graphene ratios, enabled tuning and optimization of the sample morphology, as confirmed via a scanning electron microscopy study. The results reveal that the graphene content is a crucial parameter yielding an optimized morphology of spherical particles composed of an elemental sulfur inner core covered by the carbonaceous compound. The electrodes are characterized in lithium metal half-cells in terms of cyclic voltammetry, galvanostatic cycling tests, rate capability and electrochemical impedance spectroscopy. Moreover, the lithium-ion diffusion coefficients of each sample are obtained by the Randles-Sevcik equation in order to evaluate the reliability of the electrochemical processes. The lithium metal half-cell with the sulfur carbon composite active material exploiting a spherical particle morphology delivers a high specific capacity of 950 mA h g-1 after 100 cycles at C/4 with a coulombic efficiency of 98%. An optimized sample, tuned in terms of sulfur content and morphology, shows superior performance, exhibiting capacities of 1128 mA h g-1 and 842 mA h g-1 over 80 cycles at C/4 and 2C, respectively.
RESUMO
Lithium-sulfur battery of practical interest requires thin-layer support to achieve acceptable volumetric energy density. However, the typical aluminum current collector of Li-ion battery cannot be efficiently used in the Li/S system due to the insulating nature of sulfur and a reaction mechanism involving electrodeposition of dissolved polysulfides. We study the electrochemical behavior of a Li/S battery using a carbon-coated Al current collector in which the low thickness, the high electronic conductivity, and, at the same time, the host ability for the reaction products are allowed by a binder-free few-layer graphene (FLG) substrate. The FLG enables a sulfur electrode having a thickness below 100 µm, fast kinetics, low impedance, and an initial capacity of 1000 mAh gS -1 with over 70% retention after 300 cycles. The Li/S cell using FLG shows volumetric and gravimetric energy densities of 300 Wh L-1 and 500 Wh kg-1, respectively, which are values well competing with commercially available Li-ion batteries.
RESUMO
In this work, novel proton-exchange membranes (PEMs) based on sulfonated poly(ether ether ketone) (SPEEK) and two-dimensional (2D) sulfonated niobium disulphide (S-NbS2) nanoflakes are synthesized by a solution-casting method and used in vanadium redox flow batteries (VRFBs). The NbS2 nanoflakes are produced by liquid-phase exfoliation of their bulk counterpart and chemically functionalized with terminal sulfonate groups to improve dimensional and chemical stabilities, proton conductivity (σ) and fuel barrier properties of the as-produced membranes. The addition of S-NbS2 nanoflakes to SPEEK decreases the vanadium ion permeability from 5.42 × 10-7 to 2.34 × 10-7 cm2 min-1. Meanwhile, it increases the membrane σ and selectivity up to 94.35 mS cm-2 and 40.32 × 104 S min cm-3, respectively. The cell assembled with the optimized membrane incorporating 2.5 wt% of S-NbS2 nanoflakes (SPEEK:2.5% S-NbS2) exhibits high efficiency metrics, i.e., coulombic efficiency between 98.7 and 99.0%, voltage efficiency between 90.2 and 73.2% and energy efficiency between 89.3 and 72.8% within the current density range of 100-300 mA cm-2, delivering a maximum power density of 0.83 W cm-2 at a current density of 870 mA cm-2. The SPEEK:2.5% S-NbS2 membrane-based VRFBs show a stable behavior over 200 cycles at 200 mA cm-2. This study opens up an effective avenue for the production of advanced SPEEK-based membranes for VRFBs.
RESUMO
Lithium-rich layered oxides (LRLOs) are opening unexplored frontiers for high-capacity/high-voltage positive electrodes in Li-ion batteries (LIBs) to meet the challenges of green and safe transportation as well as cheap and sustainable stationary energy storage from renewable sources. LRLOs exploit the extra lithiation provided by the Li1.2TM0.8O2 stoichiometries (TM = a blend of transition metals with a moderate cobalt content) achievable by a layered structure to disclose specific capacities beyond 200-250 mA h g-1 and working potentials in the 3.4-3.8 V range versus Li. Here, we demonstrate an innovative paradigm to extend the LRLO concept. We have balanced the substitution of cobalt in the transition-metal layer of the lattice with aluminum and lithium, pushing the composition of LRLO to unexplored stoichiometries, that is, Li1.2+x (Mn,Ni,Co,Al)0.8-x O2-δ. The fine tuning of the composition of the metal blend results in an optimized layered material, that is, Li1.28Mn0.54Ni0.13Co0.02Al0.03O2-δ, with outstanding electrochemical performance in full LIBs, improved environmental benignity, and reduced manufacturing costs compared to the state-of-the-art.
RESUMO
Two-dimensional (2D) transition-metal monochalcogenides have been recently predicted to be potential photo(electro)catalysts for water splitting and photoelectrochemical (PEC) reactions. Differently from the most established InSe, GaSe, GeSe, and many other monochalcogenides, bulk GaS has a large band gap of â¼2.5 eV, which increases up to more than 3.0 eV with decreasing its thickness due to quantum confinement effects. Therefore, 2D GaS fills the void between 2D small-band-gap semiconductors and insulators, resulting of interest for the realization of van der Waals type-I heterojunctions in photocatalysis, as well as the development of UV light-emitting diodes, quantum wells, and other optoelectronic devices. Based on theoretical calculations of the electronic structure of GaS as a function of layer number reported in the literature, we experimentally demonstrate, for the first time, the PEC properties of liquid-phase exfoliated GaS nanoflakes. Our results indicate that solution-processed 2D GaS-based PEC-type photodetectors outperform the corresponding solid-state photodetectors. In fact, the 2D morphology of the GaS flakes intrinsically minimizes the distance between the photogenerated charges and the surface area at which the redox reactions occur, limiting electron-hole recombination losses. The latter are instead deleterious for standard solid-state configurations. Consequently, PEC-type 2D GaS photodetectors display a relevant UV-selective photoresponse. In particular, they attain responsivities of 1.8 mA W-1 in 1 M H2SO4 [at 0.8 V vs reversible hydrogen electrode (RHE)], 4.6 mA W-1 in 1 M Na2SO4 (at 0.9 V vs RHE), and 6.8 mA W-1 in 1 M KOH (at 1.1. V vs RHE) under 275 nm illumination wavelength with an intensity of 1.3 mW cm-2. Beyond the photodetector application, 2D GaS-based PEC-type devices may find application in tandem solar PEC cells in combination with other visible-sensitive low-band-gap materials, including transition-metal monochalcogenides recently established for PEC solar energy conversion applications.
RESUMO
The development of high-power density vanadium redox flow batteries (VRFBs) with high energy efficiencies (EEs) is crucial for the widespread dissemination of this energy storage technology. In this work, we report the production of novel hierarchical carbonaceous nanomaterials for VRFB electrodes with high catalytic activity toward the vanadium redox reactions (VO2+/VO2 + and V2+/V3+). The electrode materials are produced through a rapid (minute timescale) low-pressure combined gas plasma treatment of graphite felts (GFs) in an inductively coupled radio frequency reactor. By systematically studying the effects of either pure gases (O2 and N2) or their combination at different gas plasma pressures, the electrodes are optimized to reduce their kinetic polarization for the VRFB redox reactions. To further enhance the catalytic surface area of the electrodes, single-/few-layer graphene, produced by highly scalable wet-jet milling exfoliation of graphite, is incorporated into the GFs through an infiltration method in the presence of a polymeric binder. Depending on the thickness of the proton-exchange membrane (Nafion 115 or Nafion XL), our optimized VRFB configurations can efficiently operate within a wide range of charge/discharge current densities, exhibiting energy efficiencies up to 93.9%, 90.8%, 88.3%, 85.6%, 77.6%, and 69.5% at 25, 50, 75, 100, 200, and 300 mA cm-2, respectively. Our technology is cost-competitive when compared to commercial ones (additional electrode costs < 100 m-2) and shows EEs rivalling the record-high values reported for efficient systems to date. Our work remarks on the importance to study modified plasma conditions or plasma methods alternative to those reported previously (e.g., atmospheric plasmas) to improve further the electrode performances of the current VRFB systems.
RESUMO
Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs quantum well transistors, which presents the evidence of flat bands in semiconductor AG. Two emerging peaks in photoluminescence spectra tuned by backgate voltages probe the singularity doublet of AG flat bands and demonstrate their accessibility to the Fermi level. As the Fermi level crosses the doublet, the spectra display dramatic stability against electron density, indicating interplays between electron-electron interactions and honeycomb symmetry. Our results provide a new flexible platform to explore intriguing flat band physics.
RESUMO
Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb pattern and its unique and amazing properties make it suitable for a wide range of applications ranging from electronic devices to food packaging. However, the biocompatibility of graphene is dependent on the complex interplay of its several physical and chemical properties. The main aim of the present study is to highlight the importance of integrating different characterization techniques to describe the potential release of airborne graphene flakes in a graphene processing and production research laboratory. Specifically, the production and processing (i.e., drying) of few-layer graphene (FLG) through liquid-phase exfoliation of graphite are analysed by integrated characterization techniques. For this purpose, the exposure measurement strategy was based on the multi-metric tiered approach proposed by the Organization for Economic Cooperation and Development (OECD) via integrating high-frequency real-time measurements and personal sampling. Particle number concentration, average diameter and lung deposition surface area time series acquired in the worker's personal breathing zone (PBZ) were compared simultaneously to background measurements, showing the potential release of FLG. Then, electron microscopy techniques and Raman spectroscopy were applied to characterize particles collected by personal inertial impactors to investigate the morphology, chemical composition and crystal structure of rare airborne graphene flakes. The gathered information provides a valuable basis for improving risk management strategies in research and industrial laboratories.
RESUMO
The printing of three-dimensional (3D) porous electrodes for Li-ion batteries is considered a key driver for the design and realization of advanced energy storage systems. While different 3D printing techniques offer great potential to design and develop 3D architectures, several factors need to be addressed to print 3D electrodes, maintaining an optimal trade-off between electrochemical and mechanical performances. Herein, we report the first demonstration of 3D printed Si-based electrodes fabricated using a simple and cost-effective fused deposition modelling (FDM) method, and implemented as anodes in Li-ion batteries. To fulfil the printability requirement while maximizing the electrochemical performance, the composition of the FDM filament has been engineered using polylactic acid as the host polymeric matrix, a mixture of carbon black-doped polypyrrole and wet-jet milling exfoliated few-layer graphene flakes as conductive additives, and Si nanoparticles as the active material. The creation of a continuous conductive network and the control of the structural properties at the nanoscale enabled the design and realization of flexible 3D printed anodes, reaching a specific capacity up to â¼345 mA h g-1 at the current density of 20 mA g-1, together with a capacity retention of 96% after 350 cycles. The obtained results are promising for the fabrication of flexible polymeric-based 3D energy storage devices to meet the challenges ahead for the design of next-generation electronic devices.
RESUMO
Photoelectrochemical (PEC) systems represent powerful tools to convert electromagnetic radiation into chemical fuels and electricity. In this context, two-dimensional (2D) materials are attracting enormous interest as potential advanced photo(electro)catalysts and, recently, 2D group-IVA metal monochalcogenides have been theoretically predicted to be water splitting photocatalysts. In this work, we use density functional theory calculations to theoretically investigate the photocatalytic activity of single-/few-layer GeSe nanoflakes for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in pH conditions ranging from 0 to 14. Our simulations show that GeSe nanoflakes with different thickness can be mixed in the form of nanoporous films to act as nanoscale tandem systems, in which the flakes, depending on their thickness, can operate as HER- and/or OER photocatalysts. On the basis of theoretical predictions, we report the first experimental characterization of the photo(electro)catalytic activity of single-/few-layer GeSe flakes in different aqueous media, ranging from acidic to alkaline solutions: 0.5 M H2SO4 (pH 0.3), 1 M KCl (pH 6.5), and 1 M KOH (pH 14). The films of the GeSe nanoflakes are fabricated by spray coating GeSe nanoflakes dispersion in 2-propanol obtained through liquid-phase exfoliation of synthesized orthorhombic (Pnma) GeSe bulk crystals. The PEC properties of the GeSe nanoflakes are used to design PEC-type photodetectors, reaching a responsivity of up to 0.32 AW-1 (external quantum efficiency of 86.3%) under 455 nm excitation wavelength in acidic electrolyte. The obtained performances are superior to those of several self-powered and low-voltage solution-processed photodetectors, approaching that of self-powered commercial UV-Vis photodetectors. The obtained results inspire the use of 2D GeSe in proof-of-concept water photoelectrolysis cells.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Magnetic crystals formed by 2D layers interacting by weak van der Waals forces are currently a hot research topic. When these crystals are thinned to nanometric size, they can manifest strikingly different magnetic behavior compared to the bulk form. This can be the result of, for example, quantum electronic confinement effects, the presence of defects, or pinning of the crystallographic structure in metastable phases induced by the exfoliation process. In this work, an investigation of the magnetism of micromechanically cleaved CrCl3 flakes with thickness >10 nm is performed. These flakes are characterized by superconducting quantum interference device magnetometry, surface-sensitive X-ray magnetic circular dichroism, and spatially resolved magnetic force microscopy. The results highlight an enhancement of the CrCl3 antiferromagnetic interlayer interaction that appears to be independent of the flake size when the thickness is tens of nanometers. The estimated exchange field is 9 kOe, representing an increase of ≈900% compared to the one of the bulk crystals. This effect can be attributed to the pinning of the high-temperature monoclinic structure, as recently suggested by polarized Raman spectroscopy investigations in thin (8-35 nm) CrCl3 flakes.
RESUMO
Metamaterials have recently established a new paradigm for enhanced light absorption in state-of-the-art photodetectors. Here, we demonstrate broadband, highly efficient, polarization-insensitive, and gate-tunable photodetection at room temperature in a novel metadevice based on gold/graphene Sierpinski carpet plasmonic fractals. We observed an unprecedented internal quantum efficiency up to 100% from the near-infrared to the visible range with an upper bound of optical detectivity of 1011 Jones and a gain up to 106, which is a fingerprint of multiple hot carriers photogenerated in graphene. Also, we show a 100-fold enhanced photodetection due to highly focused (up to a record factor of |E/E0| ≈ 20 for graphene) electromagnetic fields induced by electrically tunable multimodal plasmons, spatially localized in self-similar fashion on the metasurface. Our findings give direct insight into the physical processes governing graphene plasmonic fractal metamaterials. The proposed structure represents a promising route for the realization of a broadband, compact, and active platform for future optoelectronic devices including multiband bio/chemical and light sensors.
RESUMO
One of the applications of graphene in which its scalable production is of utmost importance is the development of polymer composites. Among the techniques used to produce graphene flakes, the liquid-phase exfoliation (LPE) of graphite stands out due to its versatility and scalability. However, solvents suitable for the LPE process are generally toxic and have a high boiling point, making the processing challenging. The use of low boiling point solvents could be convenient for the processing, due to the easiness of their removal. In this study, the use of poly(methyl methacrylate) (PMMA) as a stabilizing agent is proposed for the production of graphene flakes in a low boiling point solvent, that is, acetone. The graphene dispersions produced in the mixture acetone-PMMA have higher concentration, +175 %, and contain a higher percentage of few-layer graphene flakes (<5â layers), that is, +60 %, compared to the dispersions prepared in acetone. The as-produced graphene dispersions are used to develop graphene/acrylonitrile-butadiene-styrene composites. The mechanical properties of the pristine polymer are improved, that is, +22 % in the Young's modulus, by adding 0.01â wt. % of graphene flakes. Moreover, a decrease of ≈20 % in the oxygen permeability is obtained by using 0.1â wt. % of graphene flakes filler, compared to the unloaded matrix.