Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 8(6): 1087-1097, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503866

RESUMO

Invasive species are pervasive around the world and have profound impacts on the ecosystem they invade. Invasive species, however, can also have impacts beyond the ecosystem they invade by altering the flow of non-living materials (for example, nutrients or chemicals) or movement of organisms across the boundaries of the invaded ecosystem. Cross-ecosystem interactions via spatial flows are ubiquitous in nature, for example, connecting forests and lakes, grasslands and rivers, and coral reefs and the deep ocean. Yet, we have a limited understanding of the cross-ecosystem impacts invasive species have relative to their local effects. By synthesizing emerging evidence, here we demonstrate the cross-ecosystem impacts of invasive species as a ubiquitous phenomenon that influences biodiversity and ecosystem functioning around the world. We identify three primary ways by which invasive species have cross-ecosystem effects: first, by altering the magnitude of spatial flows across ecosystem boundaries; second, by altering the quality of spatial flows; and third, by introducing novel spatial flows. Ultimately, the strong impacts invasive species can drive across ecosystem boundaries suggests the need for a paradigm shift in how we study and manage invasive species around the world, expanding from a local to a cross-ecosystem perspective.


Assuntos
Ecossistema , Espécies Introduzidas , Biodiversidade , Animais
2.
Ecol Lett ; 26(1): 3-22, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36443028

RESUMO

Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.


Assuntos
Ecossistema , Cadeia Alimentar , Humanos , Ecologia
3.
Ecol Lett ; 25(2): 440-452, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34971478

RESUMO

Ecosystems are linked through spatial flows of organisms and nutrients that impact their biodiversity and regulation. Theory has predominantly studied passive nutrient flows that occur independently of organism movement. Mobile organisms, however, commonly drive nutrient flows across ecosystems through nutrient recycling. Using a meta-ecosystem model where consumers move between ecosystems, we study how consumer recycling and traits related to feeding and sheltering preferences affect species diversity and trophic regulation. We show local effects of recycling can cascade across space, yielding spatially heterogeneous top-down and bottom-up effects. Consumer traits impact the direction and magnitude of these effects by enabling recycling to favour a single ecosystem. Recycling further modifies outcomes of competition between consumer species by creating a positive feedback on the production of one competitor. Our findings suggest spatial interactions between feeding and recycling activities of organisms are key to predicting biodiversity and ecosystem functioning across spatial scales.


Assuntos
Biodiversidade , Ecossistema , Cadeia Alimentar , Nutrientes
4.
Trends Ecol Evol ; 35(12): 1068-1077, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919798

RESUMO

Understanding how the three currencies of life - energy, material, and information - interact is a key step towards synthesis in ecology and evolution. However, current theory focuses on the role of matter as a resource and energy, and typically ignores how the same matter can have other important effects as a carrier of information or modifier of the environment. Here we present the hypothesis that the dynamic conversion of matter by organisms among its three currencies mediates the structure and function of ecosystems, and that these effects can even supersede the effects of matter as a resource. Humans are changing the information in the environment and this is altering species interactions and flows of matter within and among ecosystems.


Assuntos
Ecossistema , Humanos
5.
PLoS Negl Trop Dis ; 10(9): e0004923, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27607836

RESUMO

Through full genome analyses of four atypical Bacillus cereus isolates, designated B. cereus biovar anthracis, we describe a distinct clade within the B. cereus group that presents with anthrax-like disease, carrying virulence plasmids similar to those of classic Bacillus anthracis. We have isolated members of this clade from different mammals (wild chimpanzees, gorillas, an elephant and goats) in West and Central Africa (Côte d'Ivoire, Cameroon, Central African Republic and Democratic Republic of Congo). The isolates shared several phenotypic features of both B. anthracis and B. cereus, but differed amongst each other in motility and their resistance or sensitivity to penicillin. They all possessed the same mutation in the regulator gene plcR, different from the one found in B. anthracis, and in addition, carry genes which enable them to produce a second capsule composed of hyaluronic acid. Our findings show the existence of a discrete clade of the B. cereus group capable of causing anthrax-like disease, found in areas of high biodiversity, which are possibly also the origin of the worldwide distributed B. anthracis. Establishing the impact of these pathogenic bacteria on threatened wildlife species will require systematic investigation. Furthermore, the consumption of wildlife found dead by the local population and presence in a domestic animal reveal potential sources of exposure to humans.


Assuntos
Antraz/veterinária , Bacillus anthracis/genética , Bacillus anthracis/patogenicidade , Bacillus cereus/genética , Bacillus cereus/patogenicidade , Proteínas de Bactérias/genética , Mamíferos/microbiologia , Transativadores/genética , África , Animais , Antraz/epidemiologia , Antraz/microbiologia , Bacillus anthracis/isolamento & purificação , Bacillus cereus/isolamento & purificação , DNA Bacteriano/sangue , Humanos , Mutação , Filogenia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA